The Expected Embedding Dimension, type and weight of a Numerical Semigroup Article Swipe
Nathan O. Kaplan
,
Deepesh Singhal
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.07811
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2211.07811
We study statistical properties of numerical semigroups of genus $g$ as $g$ goes to infinity. More specifically, we answer a question of Eliahou by showing that as $g$ goes to infinity, the proportion of numerical semigroups of genus $g$ with embedding dimension close to $g/\sqrt{5}$ approaches $1$. We prove similar results for the type and weight of a numerical semigroup of genus $g$.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2211.07811
- https://arxiv.org/pdf/2211.07811
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309201660
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309201660Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2211.07811Digital Object Identifier
- Title
-
The Expected Embedding Dimension, type and weight of a Numerical SemigroupWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-15Full publication date if available
- Authors
-
Nathan O. Kaplan, Deepesh SinghalList of authors in order
- Landing page
-
https://arxiv.org/abs/2211.07811Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2211.07811Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.07811Direct OA link when available
- Concepts
-
Numerical semigroup, Embedding, Mathematics, Genus, Dimension (graph theory), Type (biology), Infinity, Semigroup, Pure mathematics, Combinatorics, Discrete mathematics, Mathematical analysis, Computer science, Artificial intelligence, Botany, Biology, EcologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309201660 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2211.07811 |
| ids.doi | https://doi.org/10.48550/arxiv.2211.07811 |
| ids.openalex | https://openalex.org/W4309201660 |
| fwci | |
| type | preprint |
| title | The Expected Embedding Dimension, type and weight of a Numerical Semigroup |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12069 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2602 |
| topics[0].subfield.display_name | Algebra and Number Theory |
| topics[0].display_name | Commutative Algebra and Its Applications |
| topics[1].id | https://openalex.org/T11476 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2608 |
| topics[1].subfield.display_name | Geometry and Topology |
| topics[1].display_name | Graph theory and applications |
| topics[2].id | https://openalex.org/T12401 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9742000102996826 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Scheduling and Timetabling Solutions |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779628518 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8520878553390503 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7069664 |
| concepts[0].display_name | Numerical semigroup |
| concepts[1].id | https://openalex.org/C41608201 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8269245624542236 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[1].display_name | Embedding |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.8153806924819946 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C157369684 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7998327016830444 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q34740 |
| concepts[3].display_name | Genus |
| concepts[4].id | https://openalex.org/C33676613 |
| concepts[4].level | 2 |
| concepts[4].score | 0.7590150833129883 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[4].display_name | Dimension (graph theory) |
| concepts[5].id | https://openalex.org/C2777299769 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6652746200561523 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3707858 |
| concepts[5].display_name | Type (biology) |
| concepts[6].id | https://openalex.org/C7321624 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6583765149116516 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205 |
| concepts[6].display_name | Infinity |
| concepts[7].id | https://openalex.org/C207405024 |
| concepts[7].level | 2 |
| concepts[7].score | 0.6488993167877197 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207348 |
| concepts[7].display_name | Semigroup |
| concepts[8].id | https://openalex.org/C202444582 |
| concepts[8].level | 1 |
| concepts[8].score | 0.47684088349342346 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[8].display_name | Pure mathematics |
| concepts[9].id | https://openalex.org/C114614502 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41082391142845154 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[9].display_name | Combinatorics |
| concepts[10].id | https://openalex.org/C118615104 |
| concepts[10].level | 1 |
| concepts[10].score | 0.344970166683197 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[10].display_name | Discrete mathematics |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.24385005235671997 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07788598537445068 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.04045209288597107 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C59822182 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[14].display_name | Botany |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C18903297 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[16].display_name | Ecology |
| keywords[0].id | https://openalex.org/keywords/numerical-semigroup |
| keywords[0].score | 0.8520878553390503 |
| keywords[0].display_name | Numerical semigroup |
| keywords[1].id | https://openalex.org/keywords/embedding |
| keywords[1].score | 0.8269245624542236 |
| keywords[1].display_name | Embedding |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.8153806924819946 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/genus |
| keywords[3].score | 0.7998327016830444 |
| keywords[3].display_name | Genus |
| keywords[4].id | https://openalex.org/keywords/dimension |
| keywords[4].score | 0.7590150833129883 |
| keywords[4].display_name | Dimension (graph theory) |
| keywords[5].id | https://openalex.org/keywords/type |
| keywords[5].score | 0.6652746200561523 |
| keywords[5].display_name | Type (biology) |
| keywords[6].id | https://openalex.org/keywords/infinity |
| keywords[6].score | 0.6583765149116516 |
| keywords[6].display_name | Infinity |
| keywords[7].id | https://openalex.org/keywords/semigroup |
| keywords[7].score | 0.6488993167877197 |
| keywords[7].display_name | Semigroup |
| keywords[8].id | https://openalex.org/keywords/pure-mathematics |
| keywords[8].score | 0.47684088349342346 |
| keywords[8].display_name | Pure mathematics |
| keywords[9].id | https://openalex.org/keywords/combinatorics |
| keywords[9].score | 0.41082391142845154 |
| keywords[9].display_name | Combinatorics |
| keywords[10].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[10].score | 0.344970166683197 |
| keywords[10].display_name | Discrete mathematics |
| keywords[11].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[11].score | 0.24385005235671997 |
| keywords[11].display_name | Mathematical analysis |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.07788598537445068 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.04045209288597107 |
| keywords[13].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2211.07811 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2211.07811 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2211.07811 |
| locations[1].id | doi:10.48550/arxiv.2211.07811 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2211.07811 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5084890905 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5305-983X |
| authorships[0].author.display_name | Nathan O. Kaplan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kaplan, Nathan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5065125948 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1317-5523 |
| authorships[1].author.display_name | Deepesh Singhal |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Singhal, Deepesh |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.07811 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Expected Embedding Dimension, type and weight of a Numerical Semigroup |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12069 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2602 |
| primary_topic.subfield.display_name | Algebra and Number Theory |
| primary_topic.display_name | Commutative Algebra and Its Applications |
| related_works | https://openalex.org/W2522074991, https://openalex.org/W4283452026, https://openalex.org/W1980973647, https://openalex.org/W2153946164, https://openalex.org/W4289919814, https://openalex.org/W2953366618, https://openalex.org/W3041033841, https://openalex.org/W2950496050, https://openalex.org/W2963027990, https://openalex.org/W4322760346 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.07811 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.07811 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.07811 |
| primary_location.id | pmh:oai:arXiv.org:2211.07811 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2211.07811 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2211.07811 |
| publication_date | 2022-11-15 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 19, 57 |
| abstract_inverted_index.We | 0, 47 |
| abstract_inverted_index.as | 10, 26 |
| abstract_inverted_index.by | 23 |
| abstract_inverted_index.of | 4, 7, 21, 33, 36, 56, 60 |
| abstract_inverted_index.to | 13, 29, 43 |
| abstract_inverted_index.we | 17 |
| abstract_inverted_index.$g$ | 9, 11, 27, 38 |
| abstract_inverted_index.and | 54 |
| abstract_inverted_index.for | 51 |
| abstract_inverted_index.the | 31, 52 |
| abstract_inverted_index.$1$. | 46 |
| abstract_inverted_index.$g$. | 62 |
| abstract_inverted_index.More | 15 |
| abstract_inverted_index.goes | 12, 28 |
| abstract_inverted_index.that | 25 |
| abstract_inverted_index.type | 53 |
| abstract_inverted_index.with | 39 |
| abstract_inverted_index.close | 42 |
| abstract_inverted_index.genus | 8, 37, 61 |
| abstract_inverted_index.prove | 48 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.answer | 18 |
| abstract_inverted_index.weight | 55 |
| abstract_inverted_index.Eliahou | 22 |
| abstract_inverted_index.results | 50 |
| abstract_inverted_index.showing | 24 |
| abstract_inverted_index.similar | 49 |
| abstract_inverted_index.question | 20 |
| abstract_inverted_index.dimension | 41 |
| abstract_inverted_index.embedding | 40 |
| abstract_inverted_index.infinity, | 30 |
| abstract_inverted_index.infinity. | 14 |
| abstract_inverted_index.numerical | 5, 34, 58 |
| abstract_inverted_index.semigroup | 59 |
| abstract_inverted_index.approaches | 45 |
| abstract_inverted_index.properties | 3 |
| abstract_inverted_index.proportion | 32 |
| abstract_inverted_index.semigroups | 6, 35 |
| abstract_inverted_index.statistical | 2 |
| abstract_inverted_index.$g/\sqrt{5}$ | 44 |
| abstract_inverted_index.specifically, | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |