The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2203.03761
We consider the problem of training a $d$ dimensional model with distributed differential privacy (DP) where secure aggregation (SecAgg) is used to ensure that the server only sees the noisy sum of $n$ model updates in every training round. Taking into account the constraints imposed by SecAgg, we characterize the fundamental communication cost required to obtain the best accuracy achievable under $\varepsilon$ central DP (i.e. under a fully trusted server and no communication constraints). Our results show that $\tilde{O}\left( \min(n^2\varepsilon^2, d) \right)$ bits per client are both sufficient and necessary, and this fundamental limit can be achieved by a linear scheme based on sparse random projections. This provides a significant improvement relative to state-of-the-art SecAgg distributed DP schemes which use $\tilde{O}(d\log(d/\varepsilon^2))$ bits per client. Empirically, we evaluate our proposed scheme on real-world federated learning tasks. We find that our theoretical analysis is well matched in practice. In particular, we show that we can reduce the communication cost significantly to under $1.2$ bits per parameter in realistic privacy settings without decreasing test-time performance. Our work hence theoretically and empirically specifies the fundamental price of using SecAgg.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2203.03761
- https://arxiv.org/pdf/2203.03761
- OA Status
- green
- Cited By
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221164659
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221164659Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2203.03761Digital Object Identifier
- Title
-
The Fundamental Price of Secure Aggregation in Differentially Private Federated LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-07Full publication date if available
- Authors
-
Weining Chen, Christopher A. Choquette-Choo, Peter Kairouz, Ananda Theertha SureshList of authors in order
- Landing page
-
https://arxiv.org/abs/2203.03761Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2203.03761Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2203.03761Direct OA link when available
- Concepts
-
Scheme (mathematics), Differential privacy, Federated learning, Computer science, Limit (mathematics), State (computer science), Tilde, Differential (mechanical device), Work (physics), Private information retrieval, Theoretical computer science, Algorithm, Discrete mathematics, Mathematics, Distributed computing, Computer security, Physics, Mathematical analysis, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 9, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221164659 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2203.03761 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.03761 |
| ids.openalex | https://openalex.org/W4221164659 |
| fwci | |
| type | preprint |
| title | The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T10237 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9682000279426575 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Cryptography and Data Security |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.957099974155426 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C77618280 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6969613432884216 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[0].display_name | Scheme (mathematics) |
| concepts[1].id | https://openalex.org/C23130292 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6573083996772766 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5275358 |
| concepts[1].display_name | Differential privacy |
| concepts[2].id | https://openalex.org/C2992525071 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6500909328460693 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q50818671 |
| concepts[2].display_name | Federated learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.642494261264801 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C151201525 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5284899473190308 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q177239 |
| concepts[4].display_name | Limit (mathematics) |
| concepts[5].id | https://openalex.org/C48103436 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49887919425964355 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[5].display_name | State (computer science) |
| concepts[6].id | https://openalex.org/C36686422 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48045915365219116 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11167 |
| concepts[6].display_name | Tilde |
| concepts[7].id | https://openalex.org/C93226319 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47643882036209106 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q193137 |
| concepts[7].display_name | Differential (mechanical device) |
| concepts[8].id | https://openalex.org/C18762648 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4346565008163452 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[8].display_name | Work (physics) |
| concepts[9].id | https://openalex.org/C99221444 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4135303497314453 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1532069 |
| concepts[9].display_name | Private information retrieval |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3513908386230469 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2961210608482361 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C118615104 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2705265283584595 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[12].display_name | Discrete mathematics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2572614848613739 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C120314980 |
| concepts[14].level | 1 |
| concepts[14].score | 0.23202863335609436 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[14].display_name | Distributed computing |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12809327244758606 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.08417516946792603 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C97355855 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[18].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/scheme |
| keywords[0].score | 0.6969613432884216 |
| keywords[0].display_name | Scheme (mathematics) |
| keywords[1].id | https://openalex.org/keywords/differential-privacy |
| keywords[1].score | 0.6573083996772766 |
| keywords[1].display_name | Differential privacy |
| keywords[2].id | https://openalex.org/keywords/federated-learning |
| keywords[2].score | 0.6500909328460693 |
| keywords[2].display_name | Federated learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.642494261264801 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/limit |
| keywords[4].score | 0.5284899473190308 |
| keywords[4].display_name | Limit (mathematics) |
| keywords[5].id | https://openalex.org/keywords/state |
| keywords[5].score | 0.49887919425964355 |
| keywords[5].display_name | State (computer science) |
| keywords[6].id | https://openalex.org/keywords/tilde |
| keywords[6].score | 0.48045915365219116 |
| keywords[6].display_name | Tilde |
| keywords[7].id | https://openalex.org/keywords/differential |
| keywords[7].score | 0.47643882036209106 |
| keywords[7].display_name | Differential (mechanical device) |
| keywords[8].id | https://openalex.org/keywords/work |
| keywords[8].score | 0.4346565008163452 |
| keywords[8].display_name | Work (physics) |
| keywords[9].id | https://openalex.org/keywords/private-information-retrieval |
| keywords[9].score | 0.4135303497314453 |
| keywords[9].display_name | Private information retrieval |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.3513908386230469 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.2961210608482361 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[12].score | 0.2705265283584595 |
| keywords[12].display_name | Discrete mathematics |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.2572614848613739 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/distributed-computing |
| keywords[14].score | 0.23202863335609436 |
| keywords[14].display_name | Distributed computing |
| keywords[15].id | https://openalex.org/keywords/computer-security |
| keywords[15].score | 0.12809327244758606 |
| keywords[15].display_name | Computer security |
| keywords[16].id | https://openalex.org/keywords/physics |
| keywords[16].score | 0.08417516946792603 |
| keywords[16].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2203.03761 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2203.03761 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2203.03761 |
| locations[1].id | doi:10.48550/arxiv.2203.03761 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2203.03761 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5020190617 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7355-9487 |
| authorships[0].author.display_name | Weining Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Wei-Ning |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5063017186 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Christopher A. Choquette-Choo |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Choquette-Choo, Christopher A. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064699160 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6897-5937 |
| authorships[2].author.display_name | Peter Kairouz |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kairouz, Peter |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5103890688 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ananda Theertha Suresh |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Suresh, Ananda Theertha |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2203.03761 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4286971788, https://openalex.org/W3199340467, https://openalex.org/W3157608626, https://openalex.org/W3132132958, https://openalex.org/W4321612632, https://openalex.org/W4322580403, https://openalex.org/W3193217249, https://openalex.org/W4280591108, https://openalex.org/W3021849752, https://openalex.org/W4286891119 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2203.03761 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2203.03761 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2203.03761 |
| primary_location.id | pmh:oai:arXiv.org:2203.03761 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2203.03761 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2203.03761 |
| publication_date | 2022-03-07 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 66, 98, 108 |
| abstract_inverted_index.DP | 63, 116 |
| abstract_inverted_index.In | 146 |
| abstract_inverted_index.We | 0, 135 |
| abstract_inverted_index.be | 95 |
| abstract_inverted_index.by | 45, 97 |
| abstract_inverted_index.d) | 80 |
| abstract_inverted_index.in | 35, 144, 164 |
| abstract_inverted_index.is | 19, 141 |
| abstract_inverted_index.no | 71 |
| abstract_inverted_index.of | 4, 31, 182 |
| abstract_inverted_index.on | 102, 130 |
| abstract_inverted_index.to | 21, 54, 112, 158 |
| abstract_inverted_index.we | 47, 125, 148, 151 |
| abstract_inverted_index.$d$ | 7 |
| abstract_inverted_index.$n$ | 32 |
| abstract_inverted_index.Our | 74, 172 |
| abstract_inverted_index.and | 70, 88, 90, 176 |
| abstract_inverted_index.are | 85 |
| abstract_inverted_index.can | 94, 152 |
| abstract_inverted_index.our | 127, 138 |
| abstract_inverted_index.per | 83, 122, 162 |
| abstract_inverted_index.sum | 30 |
| abstract_inverted_index.the | 2, 24, 28, 42, 49, 56, 154, 179 |
| abstract_inverted_index.use | 119 |
| abstract_inverted_index.(DP) | 14 |
| abstract_inverted_index.This | 106 |
| abstract_inverted_index.best | 57 |
| abstract_inverted_index.bits | 82, 121, 161 |
| abstract_inverted_index.both | 86 |
| abstract_inverted_index.cost | 52, 156 |
| abstract_inverted_index.find | 136 |
| abstract_inverted_index.into | 40 |
| abstract_inverted_index.only | 26 |
| abstract_inverted_index.sees | 27 |
| abstract_inverted_index.show | 76, 149 |
| abstract_inverted_index.that | 23, 77, 137, 150 |
| abstract_inverted_index.this | 91 |
| abstract_inverted_index.used | 20 |
| abstract_inverted_index.well | 142 |
| abstract_inverted_index.with | 10 |
| abstract_inverted_index.work | 173 |
| abstract_inverted_index.$1.2$ | 160 |
| abstract_inverted_index.(i.e. | 64 |
| abstract_inverted_index.based | 101 |
| abstract_inverted_index.every | 36 |
| abstract_inverted_index.fully | 67 |
| abstract_inverted_index.hence | 174 |
| abstract_inverted_index.limit | 93 |
| abstract_inverted_index.model | 9, 33 |
| abstract_inverted_index.noisy | 29 |
| abstract_inverted_index.price | 181 |
| abstract_inverted_index.under | 60, 65, 159 |
| abstract_inverted_index.using | 183 |
| abstract_inverted_index.where | 15 |
| abstract_inverted_index.which | 118 |
| abstract_inverted_index.SecAgg | 114 |
| abstract_inverted_index.Taking | 39 |
| abstract_inverted_index.client | 84 |
| abstract_inverted_index.ensure | 22 |
| abstract_inverted_index.linear | 99 |
| abstract_inverted_index.obtain | 55 |
| abstract_inverted_index.random | 104 |
| abstract_inverted_index.reduce | 153 |
| abstract_inverted_index.round. | 38 |
| abstract_inverted_index.scheme | 100, 129 |
| abstract_inverted_index.secure | 16 |
| abstract_inverted_index.server | 25, 69 |
| abstract_inverted_index.sparse | 103 |
| abstract_inverted_index.tasks. | 134 |
| abstract_inverted_index.SecAgg, | 46 |
| abstract_inverted_index.SecAgg. | 184 |
| abstract_inverted_index.account | 41 |
| abstract_inverted_index.central | 62 |
| abstract_inverted_index.client. | 123 |
| abstract_inverted_index.imposed | 44 |
| abstract_inverted_index.matched | 143 |
| abstract_inverted_index.privacy | 13, 166 |
| abstract_inverted_index.problem | 3 |
| abstract_inverted_index.results | 75 |
| abstract_inverted_index.schemes | 117 |
| abstract_inverted_index.trusted | 68 |
| abstract_inverted_index.updates | 34 |
| abstract_inverted_index.without | 168 |
| abstract_inverted_index.(SecAgg) | 18 |
| abstract_inverted_index.\right)$ | 81 |
| abstract_inverted_index.accuracy | 58 |
| abstract_inverted_index.achieved | 96 |
| abstract_inverted_index.analysis | 140 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.evaluate | 126 |
| abstract_inverted_index.learning | 133 |
| abstract_inverted_index.proposed | 128 |
| abstract_inverted_index.provides | 107 |
| abstract_inverted_index.relative | 111 |
| abstract_inverted_index.required | 53 |
| abstract_inverted_index.settings | 167 |
| abstract_inverted_index.training | 5, 37 |
| abstract_inverted_index.federated | 132 |
| abstract_inverted_index.parameter | 163 |
| abstract_inverted_index.practice. | 145 |
| abstract_inverted_index.realistic | 165 |
| abstract_inverted_index.specifies | 178 |
| abstract_inverted_index.test-time | 170 |
| abstract_inverted_index.achievable | 59 |
| abstract_inverted_index.decreasing | 169 |
| abstract_inverted_index.necessary, | 89 |
| abstract_inverted_index.real-world | 131 |
| abstract_inverted_index.sufficient | 87 |
| abstract_inverted_index.aggregation | 17 |
| abstract_inverted_index.constraints | 43 |
| abstract_inverted_index.dimensional | 8 |
| abstract_inverted_index.distributed | 11, 115 |
| abstract_inverted_index.empirically | 177 |
| abstract_inverted_index.fundamental | 50, 92, 180 |
| abstract_inverted_index.improvement | 110 |
| abstract_inverted_index.particular, | 147 |
| abstract_inverted_index.significant | 109 |
| abstract_inverted_index.theoretical | 139 |
| abstract_inverted_index.Empirically, | 124 |
| abstract_inverted_index.characterize | 48 |
| abstract_inverted_index.differential | 12 |
| abstract_inverted_index.performance. | 171 |
| abstract_inverted_index.projections. | 105 |
| abstract_inverted_index.$\varepsilon$ | 61 |
| abstract_inverted_index.communication | 51, 72, 155 |
| abstract_inverted_index.constraints). | 73 |
| abstract_inverted_index.significantly | 157 |
| abstract_inverted_index.theoretically | 175 |
| abstract_inverted_index.$\tilde{O}\left( | 78 |
| abstract_inverted_index.state-of-the-art | 113 |
| abstract_inverted_index.\min(n^2\varepsilon^2, | 79 |
| abstract_inverted_index.$\tilde{O}(d\log(d/\varepsilon^2))$ | 120 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |