The Hopf Bifurcation Analysis of the Boissonade Model with Time Delay and Diffusion Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/math13223599
This paper investigates the dynamical characteristics of the Boissonade model in a class of reaction–diffusion chemical systems with time delays, analyzing the system’s Hopf bifurcation with time delay as the parameter under both diffusion-free and diffusion-included conditions. First, the stability of the positive equilibrium solution is examined in the absence of diffusion, with stability criteria derived for different parameter ranges. This analysis confirms that a Hopf bifurcation occurs near the positive equilibrium, revealing that the system exhibits periodic oscillations once the time delay exceeds a critical threshold. Subsequently, the impact of the diffusion term on the Hopf bifurcation is investigated, and the critical threshold for its occurrence is determined. Finally, numerical simulations are conducted, providing comprehensive numerical validation for the theoretical findings.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/math13223599
- OA Status
- gold
- References
- 25
- OpenAlex ID
- https://openalex.org/W4416092733
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416092733Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/math13223599Digital Object Identifier
- Title
-
The Hopf Bifurcation Analysis of the Boissonade Model with Time Delay and DiffusionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-10Full publication date if available
- Authors
-
Shuguang Zuo, Liqin LiuList of authors in order
- Landing page
-
https://doi.org/10.3390/math13223599Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/math13223599Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
Full payload
| id | https://openalex.org/W4416092733 |
|---|---|
| doi | https://doi.org/10.3390/math13223599 |
| ids.doi | https://doi.org/10.3390/math13223599 |
| ids.openalex | https://openalex.org/W4416092733 |
| fwci | |
| type | article |
| title | The Hopf Bifurcation Analysis of the Boissonade Model with Time Delay and Diffusion |
| biblio.issue | 22 |
| biblio.volume | 13 |
| biblio.last_page | 3599 |
| biblio.first_page | 3599 |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| language | en |
| locations[0].id | doi:10.3390/math13223599 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192031 |
| locations[0].source.issn | 2227-7390 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-7390 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematics |
| locations[0].landing_page_url | https://doi.org/10.3390/math13223599 |
| locations[1].id | pmh:oai:doaj.org/article:1098bc3ef42f49d1a0cff1c18131988d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematics, Vol 13, Iss 22, p 3599 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/1098bc3ef42f49d1a0cff1c18131988d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101622593 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7403-9341 |
| authorships[0].author.display_name | Shuguang Zuo |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47689461 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics, Northeast Forestry University, Harbin 150040, China |
| authorships[0].institutions[0].id | https://openalex.org/I47689461 |
| authorships[0].institutions[0].ror | https://ror.org/02yxnh564 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47689461 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeast Forestry University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shiyu Zuo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics, Northeast Forestry University, Harbin 150040, China |
| authorships[1].author.id | https://openalex.org/A5005053576 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7158-6772 |
| authorships[1].author.display_name | Liqin Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47689461 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics, Northeast Forestry University, Harbin 150040, China |
| authorships[1].institutions[0].id | https://openalex.org/I47689461 |
| authorships[1].institutions[0].ror | https://ror.org/02yxnh564 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47689461 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeast Forestry University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Liqin Liu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Mathematics, Northeast Forestry University, Harbin 150040, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/math13223599 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-10T00:00:00 |
| display_name | The Hopf Bifurcation Analysis of the Boissonade Model with Time Delay and Diffusion |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T23:14:17.795251 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/math13223599 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192031 |
| best_oa_location.source.issn | 2227-7390 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-7390 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/math13223599 |
| primary_location.id | doi:10.3390/math13223599 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192031 |
| primary_location.source.issn | 2227-7390 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-7390 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematics |
| primary_location.landing_page_url | https://doi.org/10.3390/math13223599 |
| publication_date | 2025-11-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2951733163, https://openalex.org/W2808352312, https://openalex.org/W4400612886, https://openalex.org/W4368367961, https://openalex.org/W4296299187, https://openalex.org/W4400008706, https://openalex.org/W4403452439, https://openalex.org/W2016935008, https://openalex.org/W2407749486, https://openalex.org/W2064898432, https://openalex.org/W4308746906, https://openalex.org/W4205399359, https://openalex.org/W4285207934, https://openalex.org/W2789840802, https://openalex.org/W3198875014, https://openalex.org/W4386292029, https://openalex.org/W3033277432, https://openalex.org/W2067172337, https://openalex.org/W3213674663, https://openalex.org/W4327740401, https://openalex.org/W2149158098, https://openalex.org/W4412764523, https://openalex.org/W4413024321, https://openalex.org/W4405746776, https://openalex.org/W2163284349 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 11, 64, 84 |
| abstract_inverted_index.as | 28 |
| abstract_inverted_index.in | 10, 47 |
| abstract_inverted_index.is | 45, 98, 107 |
| abstract_inverted_index.of | 6, 13, 40, 50, 90 |
| abstract_inverted_index.on | 94 |
| abstract_inverted_index.and | 34, 100 |
| abstract_inverted_index.are | 112 |
| abstract_inverted_index.for | 56, 104, 118 |
| abstract_inverted_index.its | 105 |
| abstract_inverted_index.the | 3, 7, 21, 29, 38, 41, 48, 69, 74, 80, 88, 91, 95, 101, 119 |
| abstract_inverted_index.Hopf | 23, 65, 96 |
| abstract_inverted_index.This | 0, 60 |
| abstract_inverted_index.both | 32 |
| abstract_inverted_index.near | 68 |
| abstract_inverted_index.once | 79 |
| abstract_inverted_index.term | 93 |
| abstract_inverted_index.that | 63, 73 |
| abstract_inverted_index.time | 18, 26, 81 |
| abstract_inverted_index.with | 17, 25, 52 |
| abstract_inverted_index.class | 12 |
| abstract_inverted_index.delay | 27, 82 |
| abstract_inverted_index.model | 9 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.under | 31 |
| abstract_inverted_index.First, | 37 |
| abstract_inverted_index.impact | 89 |
| abstract_inverted_index.occurs | 67 |
| abstract_inverted_index.system | 75 |
| abstract_inverted_index.absence | 49 |
| abstract_inverted_index.delays, | 19 |
| abstract_inverted_index.derived | 55 |
| abstract_inverted_index.exceeds | 83 |
| abstract_inverted_index.ranges. | 59 |
| abstract_inverted_index.systems | 16 |
| abstract_inverted_index.Finally, | 109 |
| abstract_inverted_index.analysis | 61 |
| abstract_inverted_index.chemical | 15 |
| abstract_inverted_index.confirms | 62 |
| abstract_inverted_index.criteria | 54 |
| abstract_inverted_index.critical | 85, 102 |
| abstract_inverted_index.examined | 46 |
| abstract_inverted_index.exhibits | 76 |
| abstract_inverted_index.periodic | 77 |
| abstract_inverted_index.positive | 42, 70 |
| abstract_inverted_index.solution | 44 |
| abstract_inverted_index.analyzing | 20 |
| abstract_inverted_index.different | 57 |
| abstract_inverted_index.diffusion | 92 |
| abstract_inverted_index.dynamical | 4 |
| abstract_inverted_index.findings. | 121 |
| abstract_inverted_index.numerical | 110, 116 |
| abstract_inverted_index.parameter | 30, 58 |
| abstract_inverted_index.providing | 114 |
| abstract_inverted_index.revealing | 72 |
| abstract_inverted_index.stability | 39, 53 |
| abstract_inverted_index.threshold | 103 |
| abstract_inverted_index.Boissonade | 8 |
| abstract_inverted_index.conducted, | 113 |
| abstract_inverted_index.diffusion, | 51 |
| abstract_inverted_index.occurrence | 106 |
| abstract_inverted_index.system’s | 22 |
| abstract_inverted_index.threshold. | 86 |
| abstract_inverted_index.validation | 117 |
| abstract_inverted_index.bifurcation | 24, 66, 97 |
| abstract_inverted_index.conditions. | 36 |
| abstract_inverted_index.determined. | 108 |
| abstract_inverted_index.equilibrium | 43 |
| abstract_inverted_index.simulations | 111 |
| abstract_inverted_index.theoretical | 120 |
| abstract_inverted_index.equilibrium, | 71 |
| abstract_inverted_index.investigates | 2 |
| abstract_inverted_index.oscillations | 78 |
| abstract_inverted_index.Subsequently, | 87 |
| abstract_inverted_index.comprehensive | 115 |
| abstract_inverted_index.investigated, | 99 |
| abstract_inverted_index.diffusion-free | 33 |
| abstract_inverted_index.characteristics | 5 |
| abstract_inverted_index.diffusion-included | 35 |
| abstract_inverted_index.reaction–diffusion | 14 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5005053576 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I47689461 |
| citation_normalized_percentile |