The Impact of Manufacturing Transfer from China to India on China’s GDP and Employment Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1515/cfer-2024-0023
With the rising labor costs and increasing resource and environmental constraints in China, coupled with geopolitical conflicts, related industries or production processes are shifting to emerging economies such as Southeast Asia, South Asia, and Mexico. Among these, India’s development potential has garnered significant attention, and the “China-to-India Industrial Transfer Model” in the global industrial chain poses a greater impact and threat to China. This paper constructs a quantitative model to measure the impact of industrial transfer on the home country. It designs three scenarios—ultra-long-term, medium-to-long-term, and short-to-medium-term—and uses counterfactual analysis to assess the impact of India’s absorption of China’s industrial transfer on China’s GDP and employment under different scenarios. The research results indicate that the transfer of industries from China to India will generate significant socio-economic shocks. In the ultra-long-term, this industrial transfer could lead to a 15.6% reduction in China’s GDP, a 16.8% decrease in the overall income of the workforce, and a reduction in the number of employed people by 110 million. The impacts are also substantial in the medium- to-long-term and short-to-medium-term scenarios. By sectors, the relocation of low and medium-low R&D intensity manufacturing sectors has a significant impact on the Chinese economy in both the short-to-medium and medium-to-long term perspectives. The relocation of high R&D intensity manufacturing sectors, represented by the computer industry, also causes considerable negative effects on the Chinese economy in the ultra-long-term perspective. This quantitative analysis helps anticipate the economic impact of future changes in industrial layout on China’s economy and facilitates the development of preemptive strategies. Based on the medium-to-long-term international economic outlook and the characteristics of domestic regional and industrial economic development, we propose three policy implications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1515/cfer-2024-0023
- OA Status
- hybrid
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405913864
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405913864Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1515/cfer-2024-0023Digital Object Identifier
- Title
-
The Impact of Manufacturing Transfer from China to India on China’s GDP and EmploymentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-01Full publication date if available
- Authors
-
Xiaoxu Zhang, Kunfu Zhu, Shouyang WangList of authors in order
- Landing page
-
https://doi.org/10.1515/cfer-2024-0023Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1515/cfer-2024-0023Direct OA link when available
- Concepts
-
China, Economics, International economics, Development economics, Labour economics, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405913864 |
|---|---|
| doi | https://doi.org/10.1515/cfer-2024-0023 |
| ids.doi | https://doi.org/10.1515/cfer-2024-0023 |
| ids.openalex | https://openalex.org/W4405913864 |
| fwci | 0.0 |
| type | article |
| title | The Impact of Manufacturing Transfer from China to India on China’s GDP and Employment |
| biblio.issue | 4 |
| biblio.volume | 13 |
| biblio.last_page | 105 |
| biblio.first_page | 76 |
| topics[0].id | https://openalex.org/T10128 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2000 |
| topics[0].subfield.display_name | General Economics, Econometrics and Finance |
| topics[0].display_name | Global trade and economics |
| topics[1].id | https://openalex.org/T13894 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9919000267982483 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2002 |
| topics[1].subfield.display_name | Economics and Econometrics |
| topics[1].display_name | Indian Economic and Social Development |
| topics[2].id | https://openalex.org/T13057 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9908000230789185 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3320 |
| topics[2].subfield.display_name | Political Science and International Relations |
| topics[2].display_name | Asian Industrial and Economic Development |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C191935318 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7776230573654175 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[0].display_name | China |
| concepts[1].id | https://openalex.org/C162324750 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6327886581420898 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[1].display_name | Economics |
| concepts[2].id | https://openalex.org/C18547055 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3721581995487213 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q47417 |
| concepts[2].display_name | International economics |
| concepts[3].id | https://openalex.org/C47768531 |
| concepts[3].level | 1 |
| concepts[3].score | 0.33524203300476074 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1127188 |
| concepts[3].display_name | Development economics |
| concepts[4].id | https://openalex.org/C145236788 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3276435136795044 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q28161 |
| concepts[4].display_name | Labour economics |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.1453113853931427 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C166957645 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[6].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/china |
| keywords[0].score | 0.7776230573654175 |
| keywords[0].display_name | China |
| keywords[1].id | https://openalex.org/keywords/economics |
| keywords[1].score | 0.6327886581420898 |
| keywords[1].display_name | Economics |
| keywords[2].id | https://openalex.org/keywords/international-economics |
| keywords[2].score | 0.3721581995487213 |
| keywords[2].display_name | International economics |
| keywords[3].id | https://openalex.org/keywords/development-economics |
| keywords[3].score | 0.33524203300476074 |
| keywords[3].display_name | Development economics |
| keywords[4].id | https://openalex.org/keywords/labour-economics |
| keywords[4].score | 0.3276435136795044 |
| keywords[4].display_name | Labour economics |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.1453113853931427 |
| keywords[5].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1515/cfer-2024-0023 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737575852 |
| locations[0].source.issn | 2196-5633 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2196-5633 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | China Finance and Economic Review |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | China Finance and Economic Review |
| locations[0].landing_page_url | https://doi.org/10.1515/cfer-2024-0023 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100372777 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0670-1591 |
| authorships[0].author.display_name | Xiaoxu Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210120485 |
| authorships[0].affiliations[0].raw_affiliation_string | Researcher, Academy of Mathematics and Systems Science and Center for Forecasting Science, Chinese Academy of Sciences Beijing China |
| authorships[0].institutions[0].id | https://openalex.org/I4210120485 |
| authorships[0].institutions[0].ror | https://ror.org/02jkmyk67 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210120485 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Academy of Mathematics and Systems Science |
| authorships[0].institutions[1].id | https://openalex.org/I19820366 |
| authorships[0].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[1].type | government |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaoxu Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Researcher, Academy of Mathematics and Systems Science and Center for Forecasting Science, Chinese Academy of Sciences Beijing China |
| authorships[1].author.id | https://openalex.org/A5101697061 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6299-3330 |
| authorships[1].author.display_name | Kunfu Zhu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I78988378 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Economics, Renmin University of China Beijing China |
| authorships[1].institutions[0].id | https://openalex.org/I78988378 |
| authorships[1].institutions[0].ror | https://ror.org/041pakw92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I78988378 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Renmin University of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kunfu Zhu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Economics, Renmin University of China Beijing China |
| authorships[2].author.id | https://openalex.org/A5078558986 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5773-998X |
| authorships[2].author.display_name | Shouyang Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I30809798 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Entrepreneurship and Management, Shanghai Tech University Shanghai China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210165038 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Economics and Management, University of Chinese Academy of Sciences ; Beijing China |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210120485 |
| authorships[2].affiliations[2].raw_affiliation_string | Academy of Mathematics and Systems Science and Center for Forecasting Science, Chinese Academy of Sciences ; Beijing China |
| authorships[2].institutions[0].id | https://openalex.org/I4210120485 |
| authorships[2].institutions[0].ror | https://ror.org/02jkmyk67 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366, https://openalex.org/I4210120485 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Academy of Mathematics and Systems Science |
| authorships[2].institutions[1].id | https://openalex.org/I19820366 |
| authorships[2].institutions[1].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[1].type | government |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[2].id | https://openalex.org/I30809798 |
| authorships[2].institutions[2].ror | https://ror.org/030bhh786 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I30809798 |
| authorships[2].institutions[2].country_code | CN |
| authorships[2].institutions[2].display_name | ShanghaiTech University |
| authorships[2].institutions[3].id | https://openalex.org/I4210165038 |
| authorships[2].institutions[3].ror | https://ror.org/05qbk4x57 |
| authorships[2].institutions[3].type | education |
| authorships[2].institutions[3].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[2].institutions[3].country_code | CN |
| authorships[2].institutions[3].display_name | University of Chinese Academy of Sciences |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shouyang Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Academy of Mathematics and Systems Science and Center for Forecasting Science, Chinese Academy of Sciences ; Beijing China, School of Economics and Management, University of Chinese Academy of Sciences ; Beijing China, School of Entrepreneurship and Management, Shanghai Tech University Shanghai China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1515/cfer-2024-0023 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Impact of Manufacturing Transfer from China to India on China’s GDP and Employment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10128 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2000 |
| primary_topic.subfield.display_name | General Economics, Econometrics and Finance |
| primary_topic.display_name | Global trade and economics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2350270224, https://openalex.org/W2354620178, https://openalex.org/W600967366, https://openalex.org/W4403952488, https://openalex.org/W2383989146, https://openalex.org/W2351486628, https://openalex.org/W2390481881, https://openalex.org/W2791039681, https://openalex.org/W2329255431 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1515/cfer-2024-0023 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737575852 |
| best_oa_location.source.issn | 2196-5633 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2196-5633 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | China Finance and Economic Review |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | China Finance and Economic Review |
| best_oa_location.landing_page_url | https://doi.org/10.1515/cfer-2024-0023 |
| primary_location.id | doi:10.1515/cfer-2024-0023 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737575852 |
| primary_location.source.issn | 2196-5633 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2196-5633 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | China Finance and Economic Review |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | China Finance and Economic Review |
| primary_location.landing_page_url | https://doi.org/10.1515/cfer-2024-0023 |
| publication_date | 2024-12-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3122745134, https://openalex.org/W2097916756, https://openalex.org/W3208214356, https://openalex.org/W3031815008, https://openalex.org/W3112933685, https://openalex.org/W4226466296, https://openalex.org/W4381734547, https://openalex.org/W2027971051, https://openalex.org/W2154391733, https://openalex.org/W2466348615, https://openalex.org/W2800561350, https://openalex.org/W4248554038, https://openalex.org/W2049408333, https://openalex.org/W2070631858, https://openalex.org/W3137460523, https://openalex.org/W1999337017, https://openalex.org/W2600853097, https://openalex.org/W2159297001, https://openalex.org/W2921741733, https://openalex.org/W2383041128 |
| referenced_works_count | 20 |
| abstract_inverted_index.a | 57, 67, 137, 143, 154, 190 |
| abstract_inverted_index.By | 177 |
| abstract_inverted_index.In | 128 |
| abstract_inverted_index.It | 81 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.by | 162, 214 |
| abstract_inverted_index.in | 12, 51, 140, 146, 156, 170, 197, 227, 242 |
| abstract_inverted_index.of | 74, 95, 98, 117, 150, 159, 181, 207, 239, 252, 265 |
| abstract_inverted_index.on | 77, 102, 193, 223, 245, 256 |
| abstract_inverted_index.or | 20 |
| abstract_inverted_index.to | 25, 62, 70, 91, 121, 136 |
| abstract_inverted_index.we | 272 |
| abstract_inverted_index.110 | 163 |
| abstract_inverted_index.GDP | 104 |
| abstract_inverted_index.The | 110, 165, 205 |
| abstract_inverted_index.and | 6, 9, 34, 45, 60, 86, 105, 153, 174, 183, 201, 248, 262, 268 |
| abstract_inverted_index.are | 23, 167 |
| abstract_inverted_index.has | 41, 189 |
| abstract_inverted_index.low | 182 |
| abstract_inverted_index.the | 2, 46, 52, 72, 78, 93, 115, 129, 147, 151, 157, 171, 179, 194, 199, 215, 224, 228, 236, 250, 257, 263 |
| abstract_inverted_index.GDP, | 142 |
| abstract_inverted_index.This | 64, 231 |
| abstract_inverted_index.With | 1 |
| abstract_inverted_index.also | 168, 218 |
| abstract_inverted_index.both | 198 |
| abstract_inverted_index.from | 119 |
| abstract_inverted_index.high | 208 |
| abstract_inverted_index.home | 79 |
| abstract_inverted_index.lead | 135 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.term | 203 |
| abstract_inverted_index.that | 114 |
| abstract_inverted_index.this | 131 |
| abstract_inverted_index.uses | 88 |
| abstract_inverted_index.will | 123 |
| abstract_inverted_index.with | 15 |
| abstract_inverted_index.15.6% | 138 |
| abstract_inverted_index.16.8% | 144 |
| abstract_inverted_index.Among | 36 |
| abstract_inverted_index.Asia, | 31, 33 |
| abstract_inverted_index.Based | 255 |
| abstract_inverted_index.China | 120 |
| abstract_inverted_index.India | 122 |
| abstract_inverted_index.South | 32 |
| abstract_inverted_index.chain | 55 |
| abstract_inverted_index.costs | 5 |
| abstract_inverted_index.could | 134 |
| abstract_inverted_index.helps | 234 |
| abstract_inverted_index.labor | 4 |
| abstract_inverted_index.model | 69 |
| abstract_inverted_index.paper | 65 |
| abstract_inverted_index.poses | 56 |
| abstract_inverted_index.three | 83, 274 |
| abstract_inverted_index.under | 107 |
| abstract_inverted_index.China, | 13 |
| abstract_inverted_index.China. | 63 |
| abstract_inverted_index.assess | 92 |
| abstract_inverted_index.causes | 219 |
| abstract_inverted_index.future | 240 |
| abstract_inverted_index.global | 53 |
| abstract_inverted_index.impact | 59, 73, 94, 192, 238 |
| abstract_inverted_index.income | 149 |
| abstract_inverted_index.layout | 244 |
| abstract_inverted_index.number | 158 |
| abstract_inverted_index.people | 161 |
| abstract_inverted_index.policy | 275 |
| abstract_inverted_index.rising | 3 |
| abstract_inverted_index.these, | 37 |
| abstract_inverted_index.threat | 61 |
| abstract_inverted_index.Chinese | 195, 225 |
| abstract_inverted_index.Mexico. | 35 |
| abstract_inverted_index.R&D | 185, 209 |
| abstract_inverted_index.changes | 241 |
| abstract_inverted_index.coupled | 14 |
| abstract_inverted_index.designs | 82 |
| abstract_inverted_index.economy | 196, 226, 247 |
| abstract_inverted_index.effects | 222 |
| abstract_inverted_index.greater | 58 |
| abstract_inverted_index.impacts | 166 |
| abstract_inverted_index.measure | 71 |
| abstract_inverted_index.medium- | 172 |
| abstract_inverted_index.outlook | 261 |
| abstract_inverted_index.overall | 148 |
| abstract_inverted_index.propose | 273 |
| abstract_inverted_index.related | 18 |
| abstract_inverted_index.results | 112 |
| abstract_inverted_index.sectors | 188 |
| abstract_inverted_index.shocks. | 127 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Model” | 50 |
| abstract_inverted_index.Transfer | 49 |
| abstract_inverted_index.analysis | 90, 233 |
| abstract_inverted_index.computer | 216 |
| abstract_inverted_index.country. | 80 |
| abstract_inverted_index.decrease | 145 |
| abstract_inverted_index.domestic | 266 |
| abstract_inverted_index.economic | 237, 260, 270 |
| abstract_inverted_index.emerging | 26 |
| abstract_inverted_index.employed | 160 |
| abstract_inverted_index.garnered | 42 |
| abstract_inverted_index.generate | 124 |
| abstract_inverted_index.indicate | 113 |
| abstract_inverted_index.million. | 164 |
| abstract_inverted_index.negative | 221 |
| abstract_inverted_index.regional | 267 |
| abstract_inverted_index.research | 111 |
| abstract_inverted_index.resource | 8 |
| abstract_inverted_index.sectors, | 178, 212 |
| abstract_inverted_index.shifting | 24 |
| abstract_inverted_index.transfer | 76, 101, 116, 133 |
| abstract_inverted_index.China’s | 99, 103, 141, 246 |
| abstract_inverted_index.India’s | 38, 96 |
| abstract_inverted_index.Southeast | 30 |
| abstract_inverted_index.different | 108 |
| abstract_inverted_index.economies | 27 |
| abstract_inverted_index.industry, | 217 |
| abstract_inverted_index.intensity | 186, 210 |
| abstract_inverted_index.potential | 40 |
| abstract_inverted_index.processes | 22 |
| abstract_inverted_index.reduction | 139, 155 |
| abstract_inverted_index.Industrial | 48 |
| abstract_inverted_index.absorption | 97 |
| abstract_inverted_index.anticipate | 235 |
| abstract_inverted_index.attention, | 44 |
| abstract_inverted_index.conflicts, | 17 |
| abstract_inverted_index.constructs | 66 |
| abstract_inverted_index.employment | 106 |
| abstract_inverted_index.increasing | 7 |
| abstract_inverted_index.industrial | 54, 75, 100, 132, 243, 269 |
| abstract_inverted_index.industries | 19, 118 |
| abstract_inverted_index.medium-low | 184 |
| abstract_inverted_index.preemptive | 253 |
| abstract_inverted_index.production | 21 |
| abstract_inverted_index.relocation | 180, 206 |
| abstract_inverted_index.scenarios. | 109, 176 |
| abstract_inverted_index.workforce, | 152 |
| abstract_inverted_index.constraints | 11 |
| abstract_inverted_index.development | 39, 251 |
| abstract_inverted_index.facilitates | 249 |
| abstract_inverted_index.represented | 213 |
| abstract_inverted_index.significant | 43, 125, 191 |
| abstract_inverted_index.strategies. | 254 |
| abstract_inverted_index.substantial | 169 |
| abstract_inverted_index.considerable | 220 |
| abstract_inverted_index.development, | 271 |
| abstract_inverted_index.geopolitical | 16 |
| abstract_inverted_index.perspective. | 230 |
| abstract_inverted_index.quantitative | 68, 232 |
| abstract_inverted_index.to-long-term | 173 |
| abstract_inverted_index.environmental | 10 |
| abstract_inverted_index.implications. | 276 |
| abstract_inverted_index.international | 259 |
| abstract_inverted_index.manufacturing | 187, 211 |
| abstract_inverted_index.perspectives. | 204 |
| abstract_inverted_index.counterfactual | 89 |
| abstract_inverted_index.medium-to-long | 202 |
| abstract_inverted_index.socio-economic | 126 |
| abstract_inverted_index.characteristics | 264 |
| abstract_inverted_index.short-to-medium | 200 |
| abstract_inverted_index.ultra-long-term | 229 |
| abstract_inverted_index.ultra-long-term, | 130 |
| abstract_inverted_index.“China-to-India | 47 |
| abstract_inverted_index.medium-to-long-term | 258 |
| abstract_inverted_index.medium-to-long-term, | 85 |
| abstract_inverted_index.short-to-medium-term | 175 |
| abstract_inverted_index.short-to-medium-term—and | 87 |
| abstract_inverted_index.scenarios—ultra-long-term, | 84 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.51312537 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |