The importance of feature preprocessing for differentially private linear optimization Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.11106
Training machine learning models with differential privacy (DP) has received increasing interest in recent years. One of the most popular algorithms for training differentially private models is differentially private stochastic gradient descent (DPSGD) and its variants, where at each step gradients are clipped and combined with some noise. Given the increasing usage of DPSGD, we ask the question: is DPSGD alone sufficient to find a good minimizer for every dataset under privacy constraints? Towards answering this question, we show that even for the simple case of linear classification, unlike non-private optimization, (private) feature preprocessing is vital for differentially private optimization. In detail, we first show theoretically that there exists an example where without feature preprocessing, DPSGD incurs an optimality gap proportional to the maximum Euclidean norm of features over all samples. We then propose an algorithm called DPSGD-F, which combines DPSGD with feature preprocessing and prove that for classification tasks, it incurs an optimality gap proportional to the diameter of the features $\max_{x, x' \in D} \|x - x'\|_2$. We finally demonstrate the practicality of our algorithm on image classification benchmarks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.11106
- https://arxiv.org/pdf/2307.11106
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385208618
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385208618Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.11106Digital Object Identifier
- Title
-
The importance of feature preprocessing for differentially private linear optimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-19Full publication date if available
- Authors
-
Ziteng Sun, Ananda Theertha Suresh, Aditya Krishna MenonList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.11106Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.11106Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.11106Direct OA link when available
- Concepts
-
Preprocessor, Feature (linguistics), Differential privacy, Stochastic gradient descent, Computer science, Artificial intelligence, Gradient descent, Norm (philosophy), Euclidean distance, Euclidean geometry, Pattern recognition (psychology), Optimization problem, Algorithm, Mathematics, Artificial neural network, Law, Geometry, Philosophy, Political science, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385208618 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.11106 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.11106 |
| ids.openalex | https://openalex.org/W4385208618 |
| fwci | |
| type | preprint |
| title | The importance of feature preprocessing for differentially private linear optimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11612 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9631999731063843 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C34736171 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8078397512435913 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[0].display_name | Preprocessor |
| concepts[1].id | https://openalex.org/C2776401178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6959246397018433 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[1].display_name | Feature (linguistics) |
| concepts[2].id | https://openalex.org/C23130292 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6947012543678284 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5275358 |
| concepts[2].display_name | Differential privacy |
| concepts[3].id | https://openalex.org/C206688291 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6146560311317444 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7617819 |
| concepts[3].display_name | Stochastic gradient descent |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5660676956176758 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5245949625968933 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C153258448 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5081262588500977 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1199743 |
| concepts[6].display_name | Gradient descent |
| concepts[7].id | https://openalex.org/C191795146 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5005209445953369 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3878446 |
| concepts[7].display_name | Norm (philosophy) |
| concepts[8].id | https://openalex.org/C120174047 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4640587568283081 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q847073 |
| concepts[8].display_name | Euclidean distance |
| concepts[9].id | https://openalex.org/C129782007 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45953133702278137 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q162886 |
| concepts[9].display_name | Euclidean geometry |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43587690591812134 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C137836250 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4174152612686157 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[11].display_name | Optimization problem |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.4015665650367737 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.27075374126434326 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C199539241 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[15].display_name | Law |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/preprocessor |
| keywords[0].score | 0.8078397512435913 |
| keywords[0].display_name | Preprocessor |
| keywords[1].id | https://openalex.org/keywords/feature |
| keywords[1].score | 0.6959246397018433 |
| keywords[1].display_name | Feature (linguistics) |
| keywords[2].id | https://openalex.org/keywords/differential-privacy |
| keywords[2].score | 0.6947012543678284 |
| keywords[2].display_name | Differential privacy |
| keywords[3].id | https://openalex.org/keywords/stochastic-gradient-descent |
| keywords[3].score | 0.6146560311317444 |
| keywords[3].display_name | Stochastic gradient descent |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5660676956176758 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5245949625968933 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/gradient-descent |
| keywords[6].score | 0.5081262588500977 |
| keywords[6].display_name | Gradient descent |
| keywords[7].id | https://openalex.org/keywords/norm |
| keywords[7].score | 0.5005209445953369 |
| keywords[7].display_name | Norm (philosophy) |
| keywords[8].id | https://openalex.org/keywords/euclidean-distance |
| keywords[8].score | 0.4640587568283081 |
| keywords[8].display_name | Euclidean distance |
| keywords[9].id | https://openalex.org/keywords/euclidean-geometry |
| keywords[9].score | 0.45953133702278137 |
| keywords[9].display_name | Euclidean geometry |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.43587690591812134 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/optimization-problem |
| keywords[11].score | 0.4174152612686157 |
| keywords[11].display_name | Optimization problem |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.4015665650367737 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.27075374126434326 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.11106 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.11106 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.11106 |
| locations[1].id | doi:10.48550/arxiv.2307.11106 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.11106 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001128596 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ziteng Sun |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sun, Ziteng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103890688 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ananda Theertha Suresh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Suresh, Ananda Theertha |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049656925 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1352-7106 |
| authorships[2].author.display_name | Aditya Krishna Menon |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Menon, Aditya Krishna |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.11106 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The importance of feature preprocessing for differentially private linear optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4289670456, https://openalex.org/W4361791424, https://openalex.org/W4206903459, https://openalex.org/W2090152127, https://openalex.org/W2754816816, https://openalex.org/W4366280654, https://openalex.org/W3160167280, https://openalex.org/W4231621013, https://openalex.org/W4362706668, https://openalex.org/W3008318776 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.11106 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.11106 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.11106 |
| primary_location.id | pmh:oai:arXiv.org:2307.11106 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.11106 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.11106 |
| publication_date | 2023-07-19 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 167 |
| abstract_inverted_index.a | 64 |
| abstract_inverted_index.D} | 165 |
| abstract_inverted_index.In | 100 |
| abstract_inverted_index.We | 131, 169 |
| abstract_inverted_index.an | 109, 117, 134, 152 |
| abstract_inverted_index.at | 37 |
| abstract_inverted_index.in | 12 |
| abstract_inverted_index.is | 26, 58, 94 |
| abstract_inverted_index.it | 150 |
| abstract_inverted_index.of | 16, 52, 85, 126, 159, 174 |
| abstract_inverted_index.on | 177 |
| abstract_inverted_index.to | 62, 121, 156 |
| abstract_inverted_index.we | 54, 77, 102 |
| abstract_inverted_index.x' | 163 |
| abstract_inverted_index.One | 15 |
| abstract_inverted_index.\in | 164 |
| abstract_inverted_index.\|x | 166 |
| abstract_inverted_index.all | 129 |
| abstract_inverted_index.and | 33, 43, 144 |
| abstract_inverted_index.are | 41 |
| abstract_inverted_index.ask | 55 |
| abstract_inverted_index.for | 21, 67, 81, 96, 147 |
| abstract_inverted_index.gap | 119, 154 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.our | 175 |
| abstract_inverted_index.the | 17, 49, 56, 82, 122, 157, 160, 172 |
| abstract_inverted_index.(DP) | 7 |
| abstract_inverted_index.case | 84 |
| abstract_inverted_index.each | 38 |
| abstract_inverted_index.even | 80 |
| abstract_inverted_index.find | 63 |
| abstract_inverted_index.good | 65 |
| abstract_inverted_index.most | 18 |
| abstract_inverted_index.norm | 125 |
| abstract_inverted_index.over | 128 |
| abstract_inverted_index.show | 78, 104 |
| abstract_inverted_index.some | 46 |
| abstract_inverted_index.step | 39 |
| abstract_inverted_index.that | 79, 106, 146 |
| abstract_inverted_index.then | 132 |
| abstract_inverted_index.this | 75 |
| abstract_inverted_index.with | 4, 45, 141 |
| abstract_inverted_index.DPSGD | 59, 115, 140 |
| abstract_inverted_index.Given | 48 |
| abstract_inverted_index.alone | 60 |
| abstract_inverted_index.every | 68 |
| abstract_inverted_index.first | 103 |
| abstract_inverted_index.image | 178 |
| abstract_inverted_index.prove | 145 |
| abstract_inverted_index.there | 107 |
| abstract_inverted_index.under | 70 |
| abstract_inverted_index.usage | 51 |
| abstract_inverted_index.vital | 95 |
| abstract_inverted_index.where | 36, 111 |
| abstract_inverted_index.which | 138 |
| abstract_inverted_index.DPSGD, | 53 |
| abstract_inverted_index.called | 136 |
| abstract_inverted_index.exists | 108 |
| abstract_inverted_index.incurs | 116, 151 |
| abstract_inverted_index.linear | 86 |
| abstract_inverted_index.models | 3, 25 |
| abstract_inverted_index.noise. | 47 |
| abstract_inverted_index.recent | 13 |
| abstract_inverted_index.simple | 83 |
| abstract_inverted_index.tasks, | 149 |
| abstract_inverted_index.unlike | 88 |
| abstract_inverted_index.years. | 14 |
| abstract_inverted_index.(DPSGD) | 32 |
| abstract_inverted_index.Towards | 73 |
| abstract_inverted_index.clipped | 42 |
| abstract_inverted_index.dataset | 69 |
| abstract_inverted_index.descent | 31 |
| abstract_inverted_index.detail, | 101 |
| abstract_inverted_index.example | 110 |
| abstract_inverted_index.feature | 92, 113, 142 |
| abstract_inverted_index.finally | 170 |
| abstract_inverted_index.machine | 1 |
| abstract_inverted_index.maximum | 123 |
| abstract_inverted_index.popular | 19 |
| abstract_inverted_index.privacy | 6, 71 |
| abstract_inverted_index.private | 24, 28, 98 |
| abstract_inverted_index.propose | 133 |
| abstract_inverted_index.without | 112 |
| abstract_inverted_index.DPSGD-F, | 137 |
| abstract_inverted_index.Training | 0 |
| abstract_inverted_index.combined | 44 |
| abstract_inverted_index.combines | 139 |
| abstract_inverted_index.diameter | 158 |
| abstract_inverted_index.features | 127, 161 |
| abstract_inverted_index.gradient | 30 |
| abstract_inverted_index.interest | 11 |
| abstract_inverted_index.learning | 2 |
| abstract_inverted_index.received | 9 |
| abstract_inverted_index.samples. | 130 |
| abstract_inverted_index.training | 22 |
| abstract_inverted_index.x'\|_2$. | 168 |
| abstract_inverted_index.$\max_{x, | 162 |
| abstract_inverted_index.(private) | 91 |
| abstract_inverted_index.Euclidean | 124 |
| abstract_inverted_index.algorithm | 135, 176 |
| abstract_inverted_index.answering | 74 |
| abstract_inverted_index.gradients | 40 |
| abstract_inverted_index.minimizer | 66 |
| abstract_inverted_index.question, | 76 |
| abstract_inverted_index.question: | 57 |
| abstract_inverted_index.variants, | 35 |
| abstract_inverted_index.algorithms | 20 |
| abstract_inverted_index.increasing | 10, 50 |
| abstract_inverted_index.optimality | 118, 153 |
| abstract_inverted_index.stochastic | 29 |
| abstract_inverted_index.sufficient | 61 |
| abstract_inverted_index.benchmarks. | 180 |
| abstract_inverted_index.demonstrate | 171 |
| abstract_inverted_index.non-private | 89 |
| abstract_inverted_index.constraints? | 72 |
| abstract_inverted_index.differential | 5 |
| abstract_inverted_index.practicality | 173 |
| abstract_inverted_index.proportional | 120, 155 |
| abstract_inverted_index.optimization, | 90 |
| abstract_inverted_index.optimization. | 99 |
| abstract_inverted_index.preprocessing | 93, 143 |
| abstract_inverted_index.theoretically | 105 |
| abstract_inverted_index.classification | 148, 179 |
| abstract_inverted_index.differentially | 23, 27, 97 |
| abstract_inverted_index.preprocessing, | 114 |
| abstract_inverted_index.classification, | 87 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |