The infinity Quillen functor, Maurer-Cartan elements and DGL realizations Article Swipe
Related Concepts
Mathematics
Realization (probability)
Lie algebra
Functor
Bracket
Pure mathematics
Lie coalgebra
Retract
Algebra over a field
Differential (mechanical device)
Combinatorics
Affine Lie algebra
Current algebra
Physics
Thermodynamics
Mechanical engineering
Engineering
Statistics
Urtzi Buijs
,
Yves Félix
,
Aniceto Murillo
,
Daniel Tanré
·
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1702.04397
· OA: W2589021821
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1702.04397
· OA: W2589021821
We show an alternative construction of the cosimplicial free complete diferential graded Lie algebra $\mathfrak{L}_\bullet=\widehat{\mathbb{L}}(s^{-1}Δ^\bullet)$ based on a new Lie bracket formulae for Lie polynomials on a general tensor algebra. Based on it,we prove that for any complete differential graded Lie algebra $L$, its geometrical realization $\langle L\rangle=\text{Hom}_{\text{cdgl}}(\mathfrak{L}_\bullet,L)$ is isomorphic to its nerve $γ_\bullet(L)$, a deformation retract of the Getzler-Hinich realization $\text{MC}(\mathscr{A}_\bullet\widehat{\otimes} L)$.
Related Topics
Finding more related topics…