The influence of study selection criteria on statistical conclusion validity: A simulation study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/j6t3h_v1
Tier 2 interventions are designed for students who are not making sufficient progress despite receiving whole-group instruction. These interventions target a specific population, necessitating clear eligibility criteria for screening participants. While efficacy studies of Tier 2 interventions often generalize their findings to struggling readers, the eligibility criteria for selecting study samples can vary across studies. In our simulation study, we compared effect size estimates from different samples, each screened using commonly used eligibility criteria. Despite each method accurately recovering the true effect on average across 500 iterations, the range of estimates showed substantial variation, with significant under- and overestimation in individual iterations. We concluded that the perceived effectiveness of Tier 2 interventions may fluctuate based on how the sample is screened for eligibility. We propose future research to address this methodological challenge while balancing the practical demands of Tier 2 intervention studies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/j6t3h_v1
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407898844
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407898844Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/j6t3h_v1Digital Object Identifier
- Title
-
The influence of study selection criteria on statistical conclusion validity: A simulation studyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-24Full publication date if available
- Authors
-
Allyson Hanson, Jessica A. R. Logan, Jeffrey SheroList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/j6t3h_v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.31234/osf.io/j6t3h_v1Direct OA link when available
- Concepts
-
Selection (genetic algorithm), Statistics, Econometrics, Computer science, Psychology, Mathematics, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407898844 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/j6t3h_v1 |
| ids.doi | https://doi.org/10.31234/osf.io/j6t3h_v1 |
| ids.openalex | https://openalex.org/W4407898844 |
| fwci | 0.0 |
| type | preprint |
| title | The influence of study selection criteria on statistical conclusion validity: A simulation study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11918 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.23360000550746918 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Forecasting Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81917197 |
| concepts[0].level | 2 |
| concepts[0].score | 0.731323778629303 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[0].display_name | Selection (genetic algorithm) |
| concepts[1].id | https://openalex.org/C105795698 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5422350764274597 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[1].display_name | Statistics |
| concepts[2].id | https://openalex.org/C149782125 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4353322386741638 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[2].display_name | Econometrics |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.428523451089859 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3749344050884247 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.27736133337020874 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.17073053121566772 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/selection |
| keywords[0].score | 0.731323778629303 |
| keywords[0].display_name | Selection (genetic algorithm) |
| keywords[1].id | https://openalex.org/keywords/statistics |
| keywords[1].score | 0.5422350764274597 |
| keywords[1].display_name | Statistics |
| keywords[2].id | https://openalex.org/keywords/econometrics |
| keywords[2].score | 0.4353322386741638 |
| keywords[2].display_name | Econometrics |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.428523451089859 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.3749344050884247 |
| keywords[4].display_name | Psychology |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.27736133337020874 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.17073053121566772 |
| keywords[6].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.31234/osf.io/j6t3h_v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/j6t3h_v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5076437251 |
| authorships[0].author.orcid | https://orcid.org/0009-0000-0891-6038 |
| authorships[0].author.display_name | Allyson Hanson |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Allyson Hanson |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058436364 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3113-4346 |
| authorships[1].author.display_name | Jessica A. R. Logan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jessica A. R. Logan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5056949372 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2180-8979 |
| authorships[2].author.display_name | Jeffrey Shero |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jeffrey Shero |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.31234/osf.io/j6t3h_v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The influence of study selection criteria on statistical conclusion validity: A simulation study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11918 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.23360000550746918 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Forecasting Techniques and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.31234/osf.io/j6t3h_v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/j6t3h_v1 |
| primary_location.id | doi:10.31234/osf.io/j6t3h_v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/j6t3h_v1 |
| publication_date | 2025-02-24 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 1, 35, 110, 139 |
| abstract_inverted_index.a | 20 |
| abstract_inverted_index.In | 55 |
| abstract_inverted_index.We | 102, 123 |
| abstract_inverted_index.in | 99 |
| abstract_inverted_index.is | 119 |
| abstract_inverted_index.of | 33, 89, 108, 137 |
| abstract_inverted_index.on | 82, 115 |
| abstract_inverted_index.to | 41, 127 |
| abstract_inverted_index.we | 59 |
| abstract_inverted_index.500 | 85 |
| abstract_inverted_index.and | 97 |
| abstract_inverted_index.are | 3, 8 |
| abstract_inverted_index.can | 51 |
| abstract_inverted_index.for | 5, 27, 47, 121 |
| abstract_inverted_index.how | 116 |
| abstract_inverted_index.may | 112 |
| abstract_inverted_index.not | 9 |
| abstract_inverted_index.our | 56 |
| abstract_inverted_index.the | 44, 79, 87, 105, 117, 134 |
| abstract_inverted_index.who | 7 |
| abstract_inverted_index.Tier | 0, 34, 109, 138 |
| abstract_inverted_index.each | 67, 75 |
| abstract_inverted_index.from | 64 |
| abstract_inverted_index.size | 62 |
| abstract_inverted_index.that | 104 |
| abstract_inverted_index.this | 129 |
| abstract_inverted_index.true | 80 |
| abstract_inverted_index.used | 71 |
| abstract_inverted_index.vary | 52 |
| abstract_inverted_index.with | 94 |
| abstract_inverted_index.These | 17 |
| abstract_inverted_index.While | 30 |
| abstract_inverted_index.based | 114 |
| abstract_inverted_index.clear | 24 |
| abstract_inverted_index.often | 37 |
| abstract_inverted_index.range | 88 |
| abstract_inverted_index.study | 49 |
| abstract_inverted_index.their | 39 |
| abstract_inverted_index.using | 69 |
| abstract_inverted_index.while | 132 |
| abstract_inverted_index.across | 53, 84 |
| abstract_inverted_index.effect | 61, 81 |
| abstract_inverted_index.future | 125 |
| abstract_inverted_index.making | 10 |
| abstract_inverted_index.method | 76 |
| abstract_inverted_index.sample | 118 |
| abstract_inverted_index.showed | 91 |
| abstract_inverted_index.study, | 58 |
| abstract_inverted_index.target | 19 |
| abstract_inverted_index.under- | 96 |
| abstract_inverted_index.Despite | 74 |
| abstract_inverted_index.address | 128 |
| abstract_inverted_index.average | 83 |
| abstract_inverted_index.demands | 136 |
| abstract_inverted_index.despite | 13 |
| abstract_inverted_index.propose | 124 |
| abstract_inverted_index.samples | 50 |
| abstract_inverted_index.studies | 32 |
| abstract_inverted_index.commonly | 70 |
| abstract_inverted_index.compared | 60 |
| abstract_inverted_index.criteria | 26, 46 |
| abstract_inverted_index.designed | 4 |
| abstract_inverted_index.efficacy | 31 |
| abstract_inverted_index.findings | 40 |
| abstract_inverted_index.progress | 12 |
| abstract_inverted_index.readers, | 43 |
| abstract_inverted_index.research | 126 |
| abstract_inverted_index.samples, | 66 |
| abstract_inverted_index.screened | 68, 120 |
| abstract_inverted_index.specific | 21 |
| abstract_inverted_index.students | 6 |
| abstract_inverted_index.studies. | 54, 141 |
| abstract_inverted_index.balancing | 133 |
| abstract_inverted_index.challenge | 131 |
| abstract_inverted_index.concluded | 103 |
| abstract_inverted_index.criteria. | 73 |
| abstract_inverted_index.different | 65 |
| abstract_inverted_index.estimates | 63, 90 |
| abstract_inverted_index.fluctuate | 113 |
| abstract_inverted_index.perceived | 106 |
| abstract_inverted_index.practical | 135 |
| abstract_inverted_index.receiving | 14 |
| abstract_inverted_index.screening | 28 |
| abstract_inverted_index.selecting | 48 |
| abstract_inverted_index.accurately | 77 |
| abstract_inverted_index.generalize | 38 |
| abstract_inverted_index.individual | 100 |
| abstract_inverted_index.recovering | 78 |
| abstract_inverted_index.simulation | 57 |
| abstract_inverted_index.struggling | 42 |
| abstract_inverted_index.sufficient | 11 |
| abstract_inverted_index.variation, | 93 |
| abstract_inverted_index.eligibility | 25, 45, 72 |
| abstract_inverted_index.iterations, | 86 |
| abstract_inverted_index.iterations. | 101 |
| abstract_inverted_index.population, | 22 |
| abstract_inverted_index.significant | 95 |
| abstract_inverted_index.substantial | 92 |
| abstract_inverted_index.whole-group | 15 |
| abstract_inverted_index.eligibility. | 122 |
| abstract_inverted_index.instruction. | 16 |
| abstract_inverted_index.intervention | 140 |
| abstract_inverted_index.effectiveness | 107 |
| abstract_inverted_index.interventions | 2, 18, 36, 111 |
| abstract_inverted_index.necessitating | 23 |
| abstract_inverted_index.participants. | 29 |
| abstract_inverted_index.methodological | 130 |
| abstract_inverted_index.overestimation | 98 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.06200621 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |