The Landscape of Memorization in LLMs: Mechanisms, Measurement, and Mitigation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.05578
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks, yet they also exhibit memorization of their training data. This phenomenon raises critical questions about model behavior, privacy risks, and the boundary between learning and memorization. Addressing these concerns, this paper synthesizes recent studies and investigates the landscape of memorization, the factors influencing it, and methods for its detection and mitigation. We explore key drivers, including training data duplication, training dynamics, and fine-tuning procedures that influence data memorization. In addition, we examine methodologies such as prefix-based extraction, membership inference, and adversarial prompting, assessing their effectiveness in detecting and measuring memorized content. Beyond technical analysis, we also explore the broader implications of memorization, including the legal and ethical implications. Finally, we discuss mitigation strategies, including data cleaning, differential privacy, and post-training unlearning, while highlighting open challenges in balancing the need to minimize harmful memorization with model utility. This paper provides a comprehensive overview of the current state of research on LLM memorization across technical, privacy, and performance dimensions, identifying critical directions for future work.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.05578
- https://arxiv.org/pdf/2507.05578
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416060618
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416060618Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.05578Digital Object Identifier
- Title
-
The Landscape of Memorization in LLMs: Mechanisms, Measurement, and MitigationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-08Full publication date if available
- Authors
-
Alexander Xiong, Xiande Zhao, Aneesh Pappu, Dawn SongList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.05578Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.05578Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.05578Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416060618 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.05578 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.05578 |
| ids.openalex | https://openalex.org/W4416060618 |
| fwci | |
| type | preprint |
| title | The Landscape of Memorization in LLMs: Mechanisms, Measurement, and Mitigation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.05578 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.05578 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.05578 |
| locations[1].id | doi:10.48550/arxiv.2507.05578 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.05578 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5120322097 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Alexander Xiong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiong, Alexander |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5010109836 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8155-8959 |
| authorships[1].author.display_name | Xiande Zhao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhao, Xuandong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114179169 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Aneesh Pappu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pappu, Aneesh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5019426968 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9745-6802 |
| authorships[3].author.display_name | Dawn Song |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Song, Dawn |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.05578 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Landscape of Memorization in LLMs: Mechanisms, Measurement, and Mitigation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-16T23:43:54.943958 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.05578 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.05578 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.05578 |
| primary_location.id | pmh:oai:arXiv.org:2507.05578 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.05578 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.05578 |
| publication_date | 2025-07-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 153 |
| abstract_inverted_index.In | 82 |
| abstract_inverted_index.We | 65 |
| abstract_inverted_index.as | 88 |
| abstract_inverted_index.in | 99, 139 |
| abstract_inverted_index.of | 12, 19, 52, 114, 156, 160 |
| abstract_inverted_index.on | 162 |
| abstract_inverted_index.to | 143 |
| abstract_inverted_index.we | 84, 108, 123 |
| abstract_inverted_index.LLM | 163 |
| abstract_inverted_index.and | 33, 38, 48, 58, 63, 75, 93, 101, 119, 132, 168 |
| abstract_inverted_index.for | 60, 174 |
| abstract_inverted_index.it, | 57 |
| abstract_inverted_index.its | 61 |
| abstract_inverted_index.key | 67 |
| abstract_inverted_index.the | 34, 50, 54, 111, 117, 141, 157 |
| abstract_inverted_index.yet | 14 |
| abstract_inverted_index.This | 23, 150 |
| abstract_inverted_index.also | 16, 109 |
| abstract_inverted_index.data | 71, 80, 128 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.need | 142 |
| abstract_inverted_index.open | 137 |
| abstract_inverted_index.such | 87 |
| abstract_inverted_index.that | 78 |
| abstract_inverted_index.they | 15 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.wide | 10 |
| abstract_inverted_index.with | 147 |
| abstract_inverted_index.Large | 0 |
| abstract_inverted_index.about | 28 |
| abstract_inverted_index.data. | 22 |
| abstract_inverted_index.legal | 118 |
| abstract_inverted_index.model | 29, 148 |
| abstract_inverted_index.paper | 44, 151 |
| abstract_inverted_index.range | 11 |
| abstract_inverted_index.state | 159 |
| abstract_inverted_index.their | 20, 97 |
| abstract_inverted_index.these | 41 |
| abstract_inverted_index.while | 135 |
| abstract_inverted_index.work. | 176 |
| abstract_inverted_index.(LLMs) | 3 |
| abstract_inverted_index.Beyond | 105 |
| abstract_inverted_index.Models | 2 |
| abstract_inverted_index.across | 8, 165 |
| abstract_inverted_index.future | 175 |
| abstract_inverted_index.raises | 25 |
| abstract_inverted_index.recent | 46 |
| abstract_inverted_index.risks, | 32 |
| abstract_inverted_index.tasks, | 13 |
| abstract_inverted_index.between | 36 |
| abstract_inverted_index.broader | 112 |
| abstract_inverted_index.current | 158 |
| abstract_inverted_index.discuss | 124 |
| abstract_inverted_index.ethical | 120 |
| abstract_inverted_index.examine | 85 |
| abstract_inverted_index.exhibit | 17 |
| abstract_inverted_index.explore | 66, 110 |
| abstract_inverted_index.factors | 55 |
| abstract_inverted_index.harmful | 145 |
| abstract_inverted_index.methods | 59 |
| abstract_inverted_index.privacy | 31 |
| abstract_inverted_index.studies | 47 |
| abstract_inverted_index.Finally, | 122 |
| abstract_inverted_index.Language | 1 |
| abstract_inverted_index.boundary | 35 |
| abstract_inverted_index.content. | 104 |
| abstract_inverted_index.critical | 26, 172 |
| abstract_inverted_index.drivers, | 68 |
| abstract_inverted_index.learning | 37 |
| abstract_inverted_index.minimize | 144 |
| abstract_inverted_index.overview | 155 |
| abstract_inverted_index.privacy, | 131, 167 |
| abstract_inverted_index.provides | 152 |
| abstract_inverted_index.research | 161 |
| abstract_inverted_index.training | 21, 70, 73 |
| abstract_inverted_index.utility. | 149 |
| abstract_inverted_index.addition, | 83 |
| abstract_inverted_index.analysis, | 107 |
| abstract_inverted_index.assessing | 96 |
| abstract_inverted_index.balancing | 140 |
| abstract_inverted_index.behavior, | 30 |
| abstract_inverted_index.cleaning, | 129 |
| abstract_inverted_index.concerns, | 42 |
| abstract_inverted_index.detecting | 100 |
| abstract_inverted_index.detection | 62 |
| abstract_inverted_index.dynamics, | 74 |
| abstract_inverted_index.including | 69, 116, 127 |
| abstract_inverted_index.influence | 79 |
| abstract_inverted_index.landscape | 51 |
| abstract_inverted_index.measuring | 102 |
| abstract_inverted_index.memorized | 103 |
| abstract_inverted_index.questions | 27 |
| abstract_inverted_index.technical | 106 |
| abstract_inverted_index.Addressing | 40 |
| abstract_inverted_index.challenges | 138 |
| abstract_inverted_index.directions | 173 |
| abstract_inverted_index.inference, | 92 |
| abstract_inverted_index.membership | 91 |
| abstract_inverted_index.mitigation | 125 |
| abstract_inverted_index.phenomenon | 24 |
| abstract_inverted_index.procedures | 77 |
| abstract_inverted_index.prompting, | 95 |
| abstract_inverted_index.remarkable | 6 |
| abstract_inverted_index.technical, | 166 |
| abstract_inverted_index.adversarial | 94 |
| abstract_inverted_index.dimensions, | 170 |
| abstract_inverted_index.extraction, | 90 |
| abstract_inverted_index.fine-tuning | 76 |
| abstract_inverted_index.identifying | 171 |
| abstract_inverted_index.influencing | 56 |
| abstract_inverted_index.mitigation. | 64 |
| abstract_inverted_index.performance | 169 |
| abstract_inverted_index.strategies, | 126 |
| abstract_inverted_index.synthesizes | 45 |
| abstract_inverted_index.unlearning, | 134 |
| abstract_inverted_index.capabilities | 7 |
| abstract_inverted_index.demonstrated | 5 |
| abstract_inverted_index.differential | 130 |
| abstract_inverted_index.duplication, | 72 |
| abstract_inverted_index.highlighting | 136 |
| abstract_inverted_index.implications | 113 |
| abstract_inverted_index.investigates | 49 |
| abstract_inverted_index.memorization | 18, 146, 164 |
| abstract_inverted_index.prefix-based | 89 |
| abstract_inverted_index.comprehensive | 154 |
| abstract_inverted_index.effectiveness | 98 |
| abstract_inverted_index.implications. | 121 |
| abstract_inverted_index.memorization, | 53, 115 |
| abstract_inverted_index.memorization. | 39, 81 |
| abstract_inverted_index.methodologies | 86 |
| abstract_inverted_index.post-training | 133 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |