The Linguistic Picture Fuzzy Set and Its Application in Multi-Criteria Decision-Making: An Illustration to the TOPSIS and TODIM Methods Based on Entropy Weight Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3390/sym12071170
The paper considers the multi-criteria decision-making problem based on linguistic picture fuzzy information. Firstly, we propose the concept of linguistic picture fuzzy set(LPFS), where the positive-membership, the neutral-membership and the negative-membership are represented by linguistic variables, and its operation rules are also discussed. The linguistic picture fuzzy weighted averaging (LPFWA) operator and linguistic picture fuzzy weighted geometric (LPFWG) operator are developed based on the proposed operation rules. Secondly, we propose the generalized weighted distance measure, the generalized weighted Hausdorff distance measure, and the generalized hybrid weighted distance measure between LPFSs and discuss their properties. Thirdly, we extend the technique for order of preference by similarity to the ideal solution (TOPSIS) method and the TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method to the proposed distance measure, and the linguistic picture fuzzy entropy method is proposed to calculate the weights of the criteria. Finally, an illustrative example is given to verify the feasibility and effectiveness of the proposed methods, the comparative analysis with other existing methods and sensitivity analysis of the proposed methods are also discussed.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/sym12071170
- https://www.mdpi.com/2073-8994/12/7/1170/pdf?version=1594779134
- OA Status
- gold
- Cited By
- 31
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3043699408
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3043699408Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/sym12071170Digital Object Identifier
- Title
-
The Linguistic Picture Fuzzy Set and Its Application in Multi-Criteria Decision-Making: An Illustration to the TOPSIS and TODIM Methods Based on Entropy WeightWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-14Full publication date if available
- Authors
-
Donghai Liu, Yan Luo, Zaiming LiuList of authors in order
- Landing page
-
https://doi.org/10.3390/sym12071170Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-8994/12/7/1170/pdf?version=1594779134Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-8994/12/7/1170/pdf?version=1594779134Direct OA link when available
- Concepts
-
TOPSIS, Mathematics, Entropy (arrow of time), Measure (data warehouse), Ideal solution, Operator (biology), Fuzzy logic, Similarity measure, Fuzzy set, Group decision-making, Distance measures, Artificial intelligence, Computer science, Data mining, Operations research, Thermodynamics, Physics, Transcription factor, Gene, Chemistry, Law, Repressor, Political science, Quantum mechanics, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
31Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 4, 2023: 7, 2022: 8, 2021: 6Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3043699408 |
|---|---|
| doi | https://doi.org/10.3390/sym12071170 |
| ids.doi | https://doi.org/10.3390/sym12071170 |
| ids.mag | 3043699408 |
| ids.openalex | https://openalex.org/W3043699408 |
| fwci | 3.89997842 |
| type | article |
| title | The Linguistic Picture Fuzzy Set and Its Application in Multi-Criteria Decision-Making: An Illustration to the TOPSIS and TODIM Methods Based on Entropy Weight |
| biblio.issue | 7 |
| biblio.volume | 12 |
| biblio.last_page | 1170 |
| biblio.first_page | 1170 |
| topics[0].id | https://openalex.org/T10050 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Multi-Criteria Decision Making |
| topics[1].id | https://openalex.org/T11063 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9559000134468079 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Rough Sets and Fuzzy Logic |
| topics[2].id | https://openalex.org/T12135 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9370999932289124 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Fuzzy Systems and Optimization |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C51566761 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6139340996742249 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1235853 |
| concepts[0].display_name | TOPSIS |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5929193496704102 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C106301342 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5577128529548645 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4117933 |
| concepts[2].display_name | Entropy (arrow of time) |
| concepts[3].id | https://openalex.org/C2780009758 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5491341948509216 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[3].display_name | Measure (data warehouse) |
| concepts[4].id | https://openalex.org/C89591040 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5154258012771606 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1779030 |
| concepts[4].display_name | Ideal solution |
| concepts[5].id | https://openalex.org/C17020691 |
| concepts[5].level | 5 |
| concepts[5].score | 0.5040003657341003 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[5].display_name | Operator (biology) |
| concepts[6].id | https://openalex.org/C58166 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4990544319152832 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q224821 |
| concepts[6].display_name | Fuzzy logic |
| concepts[7].id | https://openalex.org/C2776517306 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4932710528373718 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q29017317 |
| concepts[7].display_name | Similarity measure |
| concepts[8].id | https://openalex.org/C42011625 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4885798394680023 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1055058 |
| concepts[8].display_name | Fuzzy set |
| concepts[9].id | https://openalex.org/C20701700 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4784812331199646 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q388791 |
| concepts[9].display_name | Group decision-making |
| concepts[10].id | https://openalex.org/C2639959 |
| concepts[10].level | 2 |
| concepts[10].score | 0.47297823429107666 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1344778 |
| concepts[10].display_name | Distance measures |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.41506925225257874 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.4031108319759369 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.34684091806411743 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C42475967 |
| concepts[14].level | 1 |
| concepts[14].score | 0.09222188591957092 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[14].display_name | Operations research |
| concepts[15].id | https://openalex.org/C97355855 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[15].display_name | Thermodynamics |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C86339819 |
| concepts[17].level | 3 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[17].display_name | Transcription factor |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| concepts[19].id | https://openalex.org/C185592680 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[19].display_name | Chemistry |
| concepts[20].id | https://openalex.org/C199539241 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[20].display_name | Law |
| concepts[21].id | https://openalex.org/C158448853 |
| concepts[21].level | 4 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[21].display_name | Repressor |
| concepts[22].id | https://openalex.org/C17744445 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[22].display_name | Political science |
| concepts[23].id | https://openalex.org/C62520636 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[23].display_name | Quantum mechanics |
| concepts[24].id | https://openalex.org/C55493867 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[24].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/topsis |
| keywords[0].score | 0.6139340996742249 |
| keywords[0].display_name | TOPSIS |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.5929193496704102 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/entropy |
| keywords[2].score | 0.5577128529548645 |
| keywords[2].display_name | Entropy (arrow of time) |
| keywords[3].id | https://openalex.org/keywords/measure |
| keywords[3].score | 0.5491341948509216 |
| keywords[3].display_name | Measure (data warehouse) |
| keywords[4].id | https://openalex.org/keywords/ideal-solution |
| keywords[4].score | 0.5154258012771606 |
| keywords[4].display_name | Ideal solution |
| keywords[5].id | https://openalex.org/keywords/operator |
| keywords[5].score | 0.5040003657341003 |
| keywords[5].display_name | Operator (biology) |
| keywords[6].id | https://openalex.org/keywords/fuzzy-logic |
| keywords[6].score | 0.4990544319152832 |
| keywords[6].display_name | Fuzzy logic |
| keywords[7].id | https://openalex.org/keywords/similarity-measure |
| keywords[7].score | 0.4932710528373718 |
| keywords[7].display_name | Similarity measure |
| keywords[8].id | https://openalex.org/keywords/fuzzy-set |
| keywords[8].score | 0.4885798394680023 |
| keywords[8].display_name | Fuzzy set |
| keywords[9].id | https://openalex.org/keywords/group-decision-making |
| keywords[9].score | 0.4784812331199646 |
| keywords[9].display_name | Group decision-making |
| keywords[10].id | https://openalex.org/keywords/distance-measures |
| keywords[10].score | 0.47297823429107666 |
| keywords[10].display_name | Distance measures |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.41506925225257874 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.4031108319759369 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.34684091806411743 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/operations-research |
| keywords[14].score | 0.09222188591957092 |
| keywords[14].display_name | Operations research |
| language | en |
| locations[0].id | doi:10.3390/sym12071170 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S190787756 |
| locations[0].source.issn | 2073-8994 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-8994 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Symmetry |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-8994/12/7/1170/pdf?version=1594779134 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Symmetry |
| locations[0].landing_page_url | https://doi.org/10.3390/sym12071170 |
| locations[1].id | pmh:oai:mdpi.com:/2073-8994/12/7/1170/ |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400947 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | MDPI (MDPI AG) |
| locations[1].source.host_organization | https://openalex.org/I4210097602 |
| locations[1].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Symmetry |
| locations[1].landing_page_url | https://dx.doi.org/10.3390/sym12071170 |
| locations[2].id | pmh:oai:doaj.org/article:199445e8c53748f59a425730dc1ef11d |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Symmetry, Vol 12, Iss 7, p 1170 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/199445e8c53748f59a425730dc1ef11d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101654974 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3052-7319 |
| authorships[0].author.display_name | Donghai Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I121296143 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[0].institutions[0].id | https://openalex.org/I121296143 |
| authorships[0].institutions[0].ror | https://ror.org/02m9vrb24 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I121296143 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hunan University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Donghai Liu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Statistics, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[1].author.id | https://openalex.org/A5100668475 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1394-4452 |
| authorships[1].author.display_name | Yan Luo |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I121296143 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[1].institutions[0].id | https://openalex.org/I121296143 |
| authorships[1].institutions[0].ror | https://ror.org/02m9vrb24 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I121296143 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yan Luo |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, Hunan University of Science and Technology, Xiangtan 411201, China |
| authorships[2].author.id | https://openalex.org/A5084629689 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9040-3924 |
| authorships[2].author.display_name | Zaiming Liu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics, Central South University, Changsha 410083, China |
| authorships[2].institutions[0].id | https://openalex.org/I139660479 |
| authorships[2].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Central South University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zaiming Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics and Statistics, Central South University, Changsha 410083, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-8994/12/7/1170/pdf?version=1594779134 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Linguistic Picture Fuzzy Set and Its Application in Multi-Criteria Decision-Making: An Illustration to the TOPSIS and TODIM Methods Based on Entropy Weight |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10050 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Multi-Criteria Decision Making |
| related_works | https://openalex.org/W2775045317, https://openalex.org/W2612149696, https://openalex.org/W2347675019, https://openalex.org/W2367947563, https://openalex.org/W2890644467, https://openalex.org/W2047025039, https://openalex.org/W4237248107, https://openalex.org/W2613305061, https://openalex.org/W1928481587, https://openalex.org/W4387501177 |
| cited_by_count | 31 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 6 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/sym12071170 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S190787756 |
| best_oa_location.source.issn | 2073-8994 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-8994 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Symmetry |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-8994/12/7/1170/pdf?version=1594779134 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Symmetry |
| best_oa_location.landing_page_url | https://doi.org/10.3390/sym12071170 |
| primary_location.id | doi:10.3390/sym12071170 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S190787756 |
| primary_location.source.issn | 2073-8994 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-8994 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Symmetry |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-8994/12/7/1170/pdf?version=1594779134 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Symmetry |
| primary_location.landing_page_url | https://doi.org/10.3390/sym12071170 |
| publication_date | 2020-07-14 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W4211007335, https://openalex.org/W1980564456, https://openalex.org/W6645914205, https://openalex.org/W4245152641, https://openalex.org/W4240278385, https://openalex.org/W2157041604, https://openalex.org/W2041210202, https://openalex.org/W2125843991, https://openalex.org/W2304576809, https://openalex.org/W2097423137, https://openalex.org/W2065043952, https://openalex.org/W594625170, https://openalex.org/W6755578655, https://openalex.org/W2779910819, https://openalex.org/W2769603914, https://openalex.org/W2533445771, https://openalex.org/W2770978345, https://openalex.org/W2463044584, https://openalex.org/W2548735830, https://openalex.org/W2771288112, https://openalex.org/W1845000206, https://openalex.org/W2734543528, https://openalex.org/W2385257316, https://openalex.org/W2526107180, https://openalex.org/W2896634720, https://openalex.org/W2167967165, https://openalex.org/W2087501680, https://openalex.org/W2920990744, https://openalex.org/W2756107921, https://openalex.org/W2934195809, https://openalex.org/W2784809004, https://openalex.org/W2902158509, https://openalex.org/W2947577298, https://openalex.org/W2037003318, https://openalex.org/W1972001268, https://openalex.org/W2464342393, https://openalex.org/W2970800000, https://openalex.org/W1971403896, https://openalex.org/W2013290439, https://openalex.org/W62273966, https://openalex.org/W1987177581, https://openalex.org/W2912565176, https://openalex.org/W2897088503 |
| referenced_works_count | 43 |
| abstract_inverted_index.an | 146 |
| abstract_inverted_index.by | 33, 103 |
| abstract_inverted_index.in | 116 |
| abstract_inverted_index.is | 136, 149 |
| abstract_inverted_index.of | 18, 101, 118, 142, 157, 171 |
| abstract_inverted_index.on | 8, 62 |
| abstract_inverted_index.to | 105, 124, 138, 151 |
| abstract_inverted_index.we | 14, 68, 95 |
| abstract_inverted_index.(an | 114 |
| abstract_inverted_index.The | 0, 43 |
| abstract_inverted_index.and | 28, 36, 51, 81, 90, 111, 120, 129, 155, 168 |
| abstract_inverted_index.are | 31, 40, 59, 175 |
| abstract_inverted_index.for | 99 |
| abstract_inverted_index.its | 37 |
| abstract_inverted_index.the | 3, 16, 24, 26, 29, 63, 70, 75, 82, 97, 106, 112, 125, 130, 140, 143, 153, 158, 161, 172 |
| abstract_inverted_index.also | 41, 176 |
| abstract_inverted_index.with | 164 |
| abstract_inverted_index.LPFSs | 89 |
| abstract_inverted_index.TODIM | 113 |
| abstract_inverted_index.based | 7, 61 |
| abstract_inverted_index.fuzzy | 11, 21, 46, 54, 133 |
| abstract_inverted_index.given | 150 |
| abstract_inverted_index.ideal | 107 |
| abstract_inverted_index.order | 100 |
| abstract_inverted_index.other | 165 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.rules | 39 |
| abstract_inverted_index.their | 92 |
| abstract_inverted_index.where | 23 |
| abstract_inverted_index.extend | 96 |
| abstract_inverted_index.hybrid | 84 |
| abstract_inverted_index.method | 110, 123, 135 |
| abstract_inverted_index.rules. | 66 |
| abstract_inverted_index.verify | 152 |
| abstract_inverted_index.(LPFWA) | 49 |
| abstract_inverted_index.(LPFWG) | 57 |
| abstract_inverted_index.acronym | 115 |
| abstract_inverted_index.between | 88 |
| abstract_inverted_index.concept | 17 |
| abstract_inverted_index.discuss | 91 |
| abstract_inverted_index.entropy | 134 |
| abstract_inverted_index.example | 148 |
| abstract_inverted_index.measure | 87 |
| abstract_inverted_index.methods | 167, 174 |
| abstract_inverted_index.picture | 10, 20, 45, 53, 132 |
| abstract_inverted_index.problem | 6 |
| abstract_inverted_index.propose | 15, 69 |
| abstract_inverted_index.weights | 141 |
| abstract_inverted_index.(TOPSIS) | 109 |
| abstract_inverted_index.Finally, | 145 |
| abstract_inverted_index.Firstly, | 13 |
| abstract_inverted_index.Thirdly, | 94 |
| abstract_inverted_index.analysis | 163, 170 |
| abstract_inverted_index.distance | 73, 79, 86, 127 |
| abstract_inverted_index.existing | 166 |
| abstract_inverted_index.measure, | 74, 80, 128 |
| abstract_inverted_index.methods, | 160 |
| abstract_inverted_index.operator | 50, 58 |
| abstract_inverted_index.proposed | 64, 126, 137, 159, 173 |
| abstract_inverted_index.solution | 108 |
| abstract_inverted_index.weighted | 47, 55, 72, 77, 85 |
| abstract_inverted_index.Hausdorff | 78 |
| abstract_inverted_index.Secondly, | 67 |
| abstract_inverted_index.averaging | 48 |
| abstract_inverted_index.calculate | 139 |
| abstract_inverted_index.considers | 2 |
| abstract_inverted_index.criteria. | 144 |
| abstract_inverted_index.developed | 60 |
| abstract_inverted_index.geometric | 56 |
| abstract_inverted_index.operation | 38, 65 |
| abstract_inverted_index.technique | 98 |
| abstract_inverted_index.Portuguese | 117 |
| abstract_inverted_index.discussed. | 42, 177 |
| abstract_inverted_index.linguistic | 9, 19, 34, 44, 52, 131 |
| abstract_inverted_index.preference | 102 |
| abstract_inverted_index.set(LPFS), | 22 |
| abstract_inverted_index.similarity | 104 |
| abstract_inverted_index.variables, | 35 |
| abstract_inverted_index.comparative | 162 |
| abstract_inverted_index.feasibility | 154 |
| abstract_inverted_index.generalized | 71, 76, 83 |
| abstract_inverted_index.interactive | 119 |
| abstract_inverted_index.properties. | 93 |
| abstract_inverted_index.represented | 32 |
| abstract_inverted_index.sensitivity | 169 |
| abstract_inverted_index.illustrative | 147 |
| abstract_inverted_index.information. | 12 |
| abstract_inverted_index.effectiveness | 156 |
| abstract_inverted_index.multi-criteria | 4, 121 |
| abstract_inverted_index.decision-making | 5 |
| abstract_inverted_index.decision-making) | 122 |
| abstract_inverted_index.neutral-membership | 27 |
| abstract_inverted_index.negative-membership | 30 |
| abstract_inverted_index.positive-membership, | 25 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5101654974 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I121296143 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.93804803 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |