The Mixed n-Coupled Nonlinear Schrödinger Equations and Related Schrödinger Flow Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s44198-025-00336-y
In this paper, the integrable n-coupled nonlinear Schrödinger equations with mixed signs of focusing- and defocusing-type nonlinearity coefficients are gauge equivalent to the equation of Schrödinger flow from $${\mathbb {R}}$$ to the pseudo-Kähler manifold $$U(n,\delta )/U(1)\times U(\delta _1,\ldots ,\delta _n),$$ where $$\delta _j\in \{-1,1\},j=1,2,\ldots ,n$$ , $$\delta :=\#\{\delta _1=1,\ldots ,\delta _n=1\}$$ denotes that the number of ones contained in $$\delta _j\,(j=1,\ldots ,n)$$ and $$U(\delta _1,\ldots ,\delta _n)$$ -invariant almost Hermitian structures. This gives a geometric interpretation of the mixed n-coupled nonlinear Schrödinger equations via Schrödinger flow on the pseudo-Kähler manifold $$U(n,\delta )/U(1)\times U(\delta _1,\ldots ,\delta _n)$$ . Finally, we obtain explicit soliton solutions of the 1-dimensional Schrödinger flow on the pseudo-Kähler manifold $$U(2,1)/U(1)\times U(1,1).$$
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s44198-025-00336-y
- https://link.springer.com/content/pdf/10.1007/s44198-025-00336-y.pdf
- OA Status
- hybrid
- References
- 45
- OpenAlex ID
- https://openalex.org/W4415359776
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415359776Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s44198-025-00336-yDigital Object Identifier
- Title
-
The Mixed n-Coupled Nonlinear Schrödinger Equations and Related Schrödinger FlowWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-20Full publication date if available
- Authors
-
Shiping Zhong, L. Xu, Zehui ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1007/s44198-025-00336-yPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s44198-025-00336-y.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s44198-025-00336-y.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
45Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415359776 |
|---|---|
| doi | https://doi.org/10.1007/s44198-025-00336-y |
| ids.doi | https://doi.org/10.1007/s44198-025-00336-y |
| ids.openalex | https://openalex.org/W4415359776 |
| fwci | 0.0 |
| type | article |
| title | The Mixed n-Coupled Nonlinear Schrödinger Equations and Related Schrödinger Flow |
| biblio.issue | 1 |
| biblio.volume | 32 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11654 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Advanced Mathematical Physics Problems |
| topics[1].id | https://openalex.org/T11575 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Nonlinear Photonic Systems |
| topics[2].id | https://openalex.org/T10248 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9983000159263611 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Nonlinear Waves and Solitons |
| is_xpac | False |
| apc_list.value | 1090 |
| apc_list.currency | EUR |
| apc_list.value_usd | 1340 |
| apc_paid.value | 1090 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1340 |
| language | en |
| locations[0].id | doi:10.1007/s44198-025-00336-y |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S113416816 |
| locations[0].source.issn | 1402-9251, 1776-0852 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1402-9251 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Nonlinear Mathematical Physics |
| locations[0].source.host_organization | https://openalex.org/P4310319965 |
| locations[0].source.host_organization_name | Springer Nature |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319965 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s44198-025-00336-y.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Nonlinear Mathematical Physics |
| locations[0].landing_page_url | https://doi.org/10.1007/s44198-025-00336-y |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5075796543 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9183-7268 |
| authorships[0].author.display_name | Shiping Zhong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shiping Zhong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100342425 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8997-3199 |
| authorships[1].author.display_name | L. Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luxin Xu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047246971 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zehui Zhao |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Zehui Zhao |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s44198-025-00336-y.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-21T00:00:00 |
| display_name | The Mixed n-Coupled Nonlinear Schrödinger Equations and Related Schrödinger Flow |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11654 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Advanced Mathematical Physics Problems |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s44198-025-00336-y |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S113416816 |
| best_oa_location.source.issn | 1402-9251, 1776-0852 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1402-9251 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Nonlinear Mathematical Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_name | Springer Nature |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44198-025-00336-y.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Nonlinear Mathematical Physics |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s44198-025-00336-y |
| primary_location.id | doi:10.1007/s44198-025-00336-y |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S113416816 |
| primary_location.source.issn | 1402-9251, 1776-0852 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1402-9251 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Nonlinear Mathematical Physics |
| primary_location.source.host_organization | https://openalex.org/P4310319965 |
| primary_location.source.host_organization_name | Springer Nature |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319965 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s44198-025-00336-y.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Nonlinear Mathematical Physics |
| primary_location.landing_page_url | https://doi.org/10.1007/s44198-025-00336-y |
| publication_date | 2025-10-20 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1971915185, https://openalex.org/W4243301790, https://openalex.org/W2008004634, https://openalex.org/W4235322506, https://openalex.org/W4375945804, https://openalex.org/W2097656129, https://openalex.org/W3195822724, https://openalex.org/W4380488985, https://openalex.org/W4392097221, https://openalex.org/W2028865453, https://openalex.org/W2015814026, https://openalex.org/W2265632252, https://openalex.org/W2778141838, https://openalex.org/W2914810627, https://openalex.org/W4380894604, https://openalex.org/W4389411035, https://openalex.org/W3216653868, https://openalex.org/W2078690312, https://openalex.org/W1981989990, https://openalex.org/W1983266776, https://openalex.org/W1989441190, https://openalex.org/W2043571311, https://openalex.org/W2013806310, https://openalex.org/W2338988260, https://openalex.org/W1615315087, https://openalex.org/W3186067854, https://openalex.org/W2971406399, https://openalex.org/W2031627259, https://openalex.org/W2038428654, https://openalex.org/W2035376850, https://openalex.org/W2895686341, https://openalex.org/W2615835067, https://openalex.org/W1910698074, https://openalex.org/W2962760793, https://openalex.org/W2962971474, https://openalex.org/W3040159310, https://openalex.org/W4319004820, https://openalex.org/W2073750620, https://openalex.org/W4388628624, https://openalex.org/W1968748540, https://openalex.org/W4383099952, https://openalex.org/W4393931273, https://openalex.org/W4410425106, https://openalex.org/W4410657760, https://openalex.org/W1552987673 |
| referenced_works_count | 45 |
| abstract_inverted_index., | 46 |
| abstract_inverted_index.. | 97 |
| abstract_inverted_index.a | 74 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.in | 59 |
| abstract_inverted_index.of | 13, 25, 56, 77, 104 |
| abstract_inverted_index.on | 87, 109 |
| abstract_inverted_index.to | 22, 31 |
| abstract_inverted_index.we | 99 |
| abstract_inverted_index.and | 15, 63 |
| abstract_inverted_index.are | 19 |
| abstract_inverted_index.the | 4, 23, 32, 54, 78, 88, 105, 110 |
| abstract_inverted_index.via | 84 |
| abstract_inverted_index.,n$$ | 45 |
| abstract_inverted_index.This | 72 |
| abstract_inverted_index.flow | 27, 86, 108 |
| abstract_inverted_index.from | 28 |
| abstract_inverted_index.ones | 57 |
| abstract_inverted_index.that | 53 |
| abstract_inverted_index.this | 2 |
| abstract_inverted_index.with | 10 |
| abstract_inverted_index.,n)$$ | 62 |
| abstract_inverted_index._j\in | 43 |
| abstract_inverted_index._n)$$ | 67, 96 |
| abstract_inverted_index.gauge | 20 |
| abstract_inverted_index.gives | 73 |
| abstract_inverted_index.mixed | 11, 79 |
| abstract_inverted_index.signs | 12 |
| abstract_inverted_index.where | 41 |
| abstract_inverted_index._n),$$ | 40 |
| abstract_inverted_index.almost | 69 |
| abstract_inverted_index.number | 55 |
| abstract_inverted_index.obtain | 100 |
| abstract_inverted_index.paper, | 3 |
| abstract_inverted_index.{R}}$$ | 30 |
| abstract_inverted_index.,\delta | 39, 50, 66, 95 |
| abstract_inverted_index.denotes | 52 |
| abstract_inverted_index.soliton | 102 |
| abstract_inverted_index.$$\delta | 42, 47, 60 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 98 |
| abstract_inverted_index.U(\delta | 37, 93 |
| abstract_inverted_index._n=1\}$$ | 51 |
| abstract_inverted_index.equation | 24 |
| abstract_inverted_index.explicit | 101 |
| abstract_inverted_index.manifold | 34, 90, 112 |
| abstract_inverted_index.Hermitian | 70 |
| abstract_inverted_index.U(1,1).$$ | 114 |
| abstract_inverted_index._1,\ldots | 38, 65, 94 |
| abstract_inverted_index.contained | 58 |
| abstract_inverted_index.equations | 9, 83 |
| abstract_inverted_index.focusing- | 14 |
| abstract_inverted_index.geometric | 75 |
| abstract_inverted_index.n-coupled | 6, 80 |
| abstract_inverted_index.nonlinear | 7, 81 |
| abstract_inverted_index.solutions | 103 |
| abstract_inverted_index.$$U(\delta | 64 |
| abstract_inverted_index.$${\mathbb | 29 |
| abstract_inverted_index.-invariant | 68 |
| abstract_inverted_index.equivalent | 21 |
| abstract_inverted_index.integrable | 5 |
| abstract_inverted_index._1=1,\ldots | 49 |
| abstract_inverted_index.structures. | 71 |
| abstract_inverted_index.$$U(n,\delta | 35, 91 |
| abstract_inverted_index.)/U(1)\times | 36, 92 |
| abstract_inverted_index.:=\#\{\delta | 48 |
| abstract_inverted_index.Schrödinger | 8, 26, 82, 85, 107 |
| abstract_inverted_index.coefficients | 18 |
| abstract_inverted_index.nonlinearity | 17 |
| abstract_inverted_index.1-dimensional | 106 |
| abstract_inverted_index.interpretation | 76 |
| abstract_inverted_index.pseudo-Kähler | 33, 89, 111 |
| abstract_inverted_index._j\,(j=1,\ldots | 61 |
| abstract_inverted_index.defocusing-type | 16 |
| abstract_inverted_index.$$U(2,1)/U(1)\times | 113 |
| abstract_inverted_index.\{-1,1\},j=1,2,\ldots | 44 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.53637527 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |