The moving target tracking and segmentation method based on space-time fusion Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1007/s11042-022-13703-4
At present, the target tracking method based on the correlation operation mainly uses deep learning to extract spatial information from video frames and then performs correlations on this basis. However, it does not extract the motion features of tracking targets on the time axis, and thus tracked targets can be easily lost when occlusion occurs. To this end, a spatiotemporal motion target tracking model incorporating Kalman filtering is proposed with the aim of alleviating the problem of occlusion in the tracking process. In combination with the segmentation model, a suitable model is selected by scores to predict or detect the current state of the target. We use an elliptic fitting strategy to evaluate the bounding boxes online. Experiments demonstrate that our approach performs well and is stable in the face of multiple challenges (such as occlusion) on the VOT2016 and VOT2018 datasets with guaranteed real-time algorithm performance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11042-022-13703-4
- https://link.springer.com/content/pdf/10.1007/s11042-022-13703-4.pdf
- OA Status
- hybrid
- Cited By
- 1
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4296961727
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4296961727Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11042-022-13703-4Digital Object Identifier
- Title
-
The moving target tracking and segmentation method based on space-time fusionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-21Full publication date if available
- Authors
-
Jie Wang, Shibin Xuan, Hao Zhang, Xuyang QinList of authors in order
- Landing page
-
https://doi.org/10.1007/s11042-022-13703-4Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11042-022-13703-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11042-022-13703-4.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Computer vision, Segmentation, Tracking (education), Bounding overwatch, Minimum bounding box, Kalman filter, Motion (physics), Process (computing), Pattern recognition (psychology), Image (mathematics), Psychology, Operating system, PedagogyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4296961727 |
|---|---|
| doi | https://doi.org/10.1007/s11042-022-13703-4 |
| ids.doi | https://doi.org/10.1007/s11042-022-13703-4 |
| ids.openalex | https://openalex.org/W4296961727 |
| fwci | 0.1237918 |
| type | article |
| title | The moving target tracking and segmentation method based on space-time fusion |
| awards[0].id | https://openalex.org/G1222602555 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61866003 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 8 |
| biblio.volume | 82 |
| biblio.last_page | 12262 |
| biblio.first_page | 12245 |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T12389 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Infrared Target Detection Methodologies |
| topics[2].id | https://openalex.org/T11659 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9876999855041504 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Advanced Image Fusion Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8662265539169312 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.8043878078460693 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7086817622184753 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C89600930 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6698428988456726 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[3].display_name | Segmentation |
| concepts[4].id | https://openalex.org/C2775936607 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6613585948944092 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[4].display_name | Tracking (education) |
| concepts[5].id | https://openalex.org/C63584917 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5806809067726135 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q333286 |
| concepts[5].display_name | Bounding overwatch |
| concepts[6].id | https://openalex.org/C147037132 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5593307018280029 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6865426 |
| concepts[6].display_name | Minimum bounding box |
| concepts[7].id | https://openalex.org/C157286648 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5450423955917358 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[7].display_name | Kalman filter |
| concepts[8].id | https://openalex.org/C104114177 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44186750054359436 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[8].display_name | Motion (physics) |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4393089711666107 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.3881121873855591 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.16783270239830017 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C19417346 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[14].display_name | Pedagogy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8662265539169312 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.8043878078460693 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.7086817622184753 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/segmentation |
| keywords[3].score | 0.6698428988456726 |
| keywords[3].display_name | Segmentation |
| keywords[4].id | https://openalex.org/keywords/tracking |
| keywords[4].score | 0.6613585948944092 |
| keywords[4].display_name | Tracking (education) |
| keywords[5].id | https://openalex.org/keywords/bounding-overwatch |
| keywords[5].score | 0.5806809067726135 |
| keywords[5].display_name | Bounding overwatch |
| keywords[6].id | https://openalex.org/keywords/minimum-bounding-box |
| keywords[6].score | 0.5593307018280029 |
| keywords[6].display_name | Minimum bounding box |
| keywords[7].id | https://openalex.org/keywords/kalman-filter |
| keywords[7].score | 0.5450423955917358 |
| keywords[7].display_name | Kalman filter |
| keywords[8].id | https://openalex.org/keywords/motion |
| keywords[8].score | 0.44186750054359436 |
| keywords[8].display_name | Motion (physics) |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.4393089711666107 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.3881121873855591 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.16783270239830017 |
| keywords[11].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1007/s11042-022-13703-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S110206669 |
| locations[0].source.issn | 1380-7501, 1573-7721 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1380-7501 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Multimedia Tools and Applications |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11042-022-13703-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Multimedia Tools and Applications |
| locations[0].landing_page_url | https://doi.org/10.1007/s11042-022-13703-4 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100440145 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9663-3165 |
| authorships[0].author.display_name | Jie Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145897649 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Guangxi Minzu university, Nanning, 530006, China |
| authorships[0].institutions[0].id | https://openalex.org/I145897649 |
| authorships[0].institutions[0].ror | https://ror.org/0044e2g62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145897649 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Minzu University of China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jie Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Artificial Intelligence, Guangxi Minzu university, Nanning, 530006, China |
| authorships[1].author.id | https://openalex.org/A5057899683 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9301-2953 |
| authorships[1].author.display_name | Shibin Xuan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145897649 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Guangxi Minzu university, Nanning, 530006, China |
| authorships[1].institutions[0].id | https://openalex.org/I145897649 |
| authorships[1].institutions[0].ror | https://ror.org/0044e2g62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145897649 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Minzu University of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shibin Xuan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Artificial Intelligence, Guangxi Minzu university, Nanning, 530006, China |
| authorships[2].author.id | https://openalex.org/A5100396844 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0404-6941 |
| authorships[2].author.display_name | Hao Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145897649 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Guangxi Minzu university, Nanning, 530006, China |
| authorships[2].institutions[0].id | https://openalex.org/I145897649 |
| authorships[2].institutions[0].ror | https://ror.org/0044e2g62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145897649 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Minzu University of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hao Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Artificial Intelligence, Guangxi Minzu university, Nanning, 530006, China |
| authorships[3].author.id | https://openalex.org/A5079221681 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1921-4423 |
| authorships[3].author.display_name | Xuyang Qin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145897649 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Artificial Intelligence, Guangxi Minzu university, Nanning, 530006, China |
| authorships[3].institutions[0].id | https://openalex.org/I145897649 |
| authorships[3].institutions[0].ror | https://ror.org/0044e2g62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145897649 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Minzu University of China |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xuyang Qin |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Artificial Intelligence, Guangxi Minzu university, Nanning, 530006, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11042-022-13703-4.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The moving target tracking and segmentation method based on space-time fusion |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W2079531124, https://openalex.org/W2369744843, https://openalex.org/W2152007080, https://openalex.org/W3217244082, https://openalex.org/W3015973434, https://openalex.org/W3084370450, https://openalex.org/W4286448033, https://openalex.org/W4281619272, https://openalex.org/W2030712947, https://openalex.org/W2408009687 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s11042-022-13703-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S110206669 |
| best_oa_location.source.issn | 1380-7501, 1573-7721 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1380-7501 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Multimedia Tools and Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11042-022-13703-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Multimedia Tools and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11042-022-13703-4 |
| primary_location.id | doi:10.1007/s11042-022-13703-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S110206669 |
| primary_location.source.issn | 1380-7501, 1573-7721 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1380-7501 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Multimedia Tools and Applications |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11042-022-13703-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Multimedia Tools and Applications |
| primary_location.landing_page_url | https://doi.org/10.1007/s11042-022-13703-4 |
| publication_date | 2022-09-21 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3130723831, https://openalex.org/W2470394683, https://openalex.org/W1964846093, https://openalex.org/W3172670627, https://openalex.org/W2421627342, https://openalex.org/W3202466785, https://openalex.org/W1955741794, https://openalex.org/W2520477759, https://openalex.org/W2557641257, https://openalex.org/W3035511673, https://openalex.org/W3173639751, https://openalex.org/W4206231965, https://openalex.org/W4210388016, https://openalex.org/W2963150697, https://openalex.org/W2154889144, https://openalex.org/W3207847139, https://openalex.org/W3160605357, https://openalex.org/W2599547527, https://openalex.org/W4221149910, https://openalex.org/W2799058067, https://openalex.org/W2963534981, https://openalex.org/W3034297219, https://openalex.org/W2681067697, https://openalex.org/W3192770405, https://openalex.org/W4211037179, https://openalex.org/W639708223, https://openalex.org/W2964242925, https://openalex.org/W2963227409, https://openalex.org/W2927438889, https://openalex.org/W2934488709, https://openalex.org/W2349308680, https://openalex.org/W4211032236, https://openalex.org/W3033114334, https://openalex.org/W1692681216, https://openalex.org/W2888270240 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 59, 89 |
| abstract_inverted_index.At | 1 |
| abstract_inverted_index.In | 83 |
| abstract_inverted_index.To | 56 |
| abstract_inverted_index.We | 106 |
| abstract_inverted_index.an | 108 |
| abstract_inverted_index.as | 135 |
| abstract_inverted_index.be | 50 |
| abstract_inverted_index.by | 94 |
| abstract_inverted_index.in | 79, 128 |
| abstract_inverted_index.is | 68, 92, 126 |
| abstract_inverted_index.it | 31 |
| abstract_inverted_index.of | 38, 73, 77, 103, 131 |
| abstract_inverted_index.on | 8, 27, 41, 137 |
| abstract_inverted_index.or | 98 |
| abstract_inverted_index.to | 16, 96, 112 |
| abstract_inverted_index.aim | 72 |
| abstract_inverted_index.and | 23, 45, 125, 140 |
| abstract_inverted_index.can | 49 |
| abstract_inverted_index.not | 33 |
| abstract_inverted_index.our | 121 |
| abstract_inverted_index.the | 3, 9, 35, 42, 71, 75, 80, 86, 100, 104, 114, 129, 138 |
| abstract_inverted_index.use | 107 |
| abstract_inverted_index.deep | 14 |
| abstract_inverted_index.does | 32 |
| abstract_inverted_index.end, | 58 |
| abstract_inverted_index.face | 130 |
| abstract_inverted_index.from | 20 |
| abstract_inverted_index.lost | 52 |
| abstract_inverted_index.that | 120 |
| abstract_inverted_index.then | 24 |
| abstract_inverted_index.this | 28, 57 |
| abstract_inverted_index.thus | 46 |
| abstract_inverted_index.time | 43 |
| abstract_inverted_index.uses | 13 |
| abstract_inverted_index.well | 124 |
| abstract_inverted_index.when | 53 |
| abstract_inverted_index.with | 70, 85, 143 |
| abstract_inverted_index.(such | 134 |
| abstract_inverted_index.axis, | 44 |
| abstract_inverted_index.based | 7 |
| abstract_inverted_index.boxes | 116 |
| abstract_inverted_index.model | 64, 91 |
| abstract_inverted_index.state | 102 |
| abstract_inverted_index.video | 21 |
| abstract_inverted_index.Kalman | 66 |
| abstract_inverted_index.basis. | 29 |
| abstract_inverted_index.detect | 99 |
| abstract_inverted_index.easily | 51 |
| abstract_inverted_index.frames | 22 |
| abstract_inverted_index.mainly | 12 |
| abstract_inverted_index.method | 6 |
| abstract_inverted_index.model, | 88 |
| abstract_inverted_index.motion | 36, 61 |
| abstract_inverted_index.scores | 95 |
| abstract_inverted_index.stable | 127 |
| abstract_inverted_index.target | 4, 62 |
| abstract_inverted_index.VOT2016 | 139 |
| abstract_inverted_index.VOT2018 | 141 |
| abstract_inverted_index.current | 101 |
| abstract_inverted_index.extract | 17, 34 |
| abstract_inverted_index.fitting | 110 |
| abstract_inverted_index.occurs. | 55 |
| abstract_inverted_index.online. | 117 |
| abstract_inverted_index.predict | 97 |
| abstract_inverted_index.problem | 76 |
| abstract_inverted_index.spatial | 18 |
| abstract_inverted_index.target. | 105 |
| abstract_inverted_index.targets | 40, 48 |
| abstract_inverted_index.tracked | 47 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.approach | 122 |
| abstract_inverted_index.bounding | 115 |
| abstract_inverted_index.datasets | 142 |
| abstract_inverted_index.elliptic | 109 |
| abstract_inverted_index.evaluate | 113 |
| abstract_inverted_index.features | 37 |
| abstract_inverted_index.learning | 15 |
| abstract_inverted_index.multiple | 132 |
| abstract_inverted_index.performs | 25, 123 |
| abstract_inverted_index.present, | 2 |
| abstract_inverted_index.process. | 82 |
| abstract_inverted_index.proposed | 69 |
| abstract_inverted_index.selected | 93 |
| abstract_inverted_index.strategy | 111 |
| abstract_inverted_index.suitable | 90 |
| abstract_inverted_index.tracking | 5, 39, 63, 81 |
| abstract_inverted_index.algorithm | 146 |
| abstract_inverted_index.filtering | 67 |
| abstract_inverted_index.occlusion | 54, 78 |
| abstract_inverted_index.operation | 11 |
| abstract_inverted_index.real-time | 145 |
| abstract_inverted_index.challenges | 133 |
| abstract_inverted_index.guaranteed | 144 |
| abstract_inverted_index.occlusion) | 136 |
| abstract_inverted_index.Experiments | 118 |
| abstract_inverted_index.alleviating | 74 |
| abstract_inverted_index.combination | 84 |
| abstract_inverted_index.correlation | 10 |
| abstract_inverted_index.demonstrate | 119 |
| abstract_inverted_index.information | 19 |
| abstract_inverted_index.correlations | 26 |
| abstract_inverted_index.performance. | 147 |
| abstract_inverted_index.segmentation | 87 |
| abstract_inverted_index.incorporating | 65 |
| abstract_inverted_index.spatiotemporal | 60 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.40672922 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |