The optimal transport paradigm enables data compression in data-driven robust control Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.23919/acc50511.2021.9483139
A new data-enabled control technique for uncertain linear time-invariant systems, recently conceived by Coulson et\ al., builds upon the direct optimization of controllers over input/output pairs drawn from a large dataset. We adopt an optimal transport-based method for compressing such large dataset to a smaller synthetic dataset of representative behaviours, aiming to alleviate the computational burden of controllers to be implemented online. Specifically, the synthetic data are determined by minimizing the Wasserstein distance between atomic distributions supported on both the original dataset and the compressed one. We show that a distributionally robust control law computed using the compressed data enjoys the same type of performance guarantees as the original dataset, at the price of enlarging the ambiguity set by an easily computable and well-behaved quantity. Numerical simulations confirm that the control performance with the synthetic data is comparable to the one obtained with the original data, but with significantly less computation required.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.23919/acc50511.2021.9483139
- OA Status
- green
- Cited By
- 4
- References
- 32
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3088894099
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3088894099Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.23919/acc50511.2021.9483139Digital Object Identifier
- Title
-
The optimal transport paradigm enables data compression in data-driven robust controlWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-05-25Full publication date if available
- Authors
-
Filippo Fabiani, Paul J. GoulartList of authors in order
- Landing page
-
https://doi.org/10.23919/acc50511.2021.9483139Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2005.09393Direct OA link when available
- Concepts
-
Ambiguity, Computer science, Computation, Set (abstract data type), Algorithm, Data set, Synthetic data, Invariant (physics), Data compression, Mathematical optimization, Optimal control, Data mining, Artificial intelligence, Mathematics, Mathematical physics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3088894099 |
|---|---|
| doi | https://doi.org/10.23919/acc50511.2021.9483139 |
| ids.doi | https://doi.org/10.48550/arxiv.2005.09393 |
| ids.mag | 3088894099 |
| ids.openalex | https://openalex.org/W3088894099 |
| fwci | 1.22893437 |
| type | preprint |
| title | The optimal transport paradigm enables data compression in data-driven robust control |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2417 |
| biblio.first_page | 2412 |
| topics[0].id | https://openalex.org/T10597 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9918000102043152 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Nuclear reactor physics and engineering |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9894999861717224 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T12056 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Markov Chains and Monte Carlo Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780522230 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7044816613197327 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1140419 |
| concepts[0].display_name | Ambiguity |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6868639588356018 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C45374587 |
| concepts[2].level | 2 |
| concepts[2].score | 0.640207827091217 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[2].display_name | Computation |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5095391869544983 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4852449893951416 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C58489278 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46960505843162537 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[5].display_name | Data set |
| concepts[6].id | https://openalex.org/C160920958 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46074429154396057 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7662746 |
| concepts[6].display_name | Synthetic data |
| concepts[7].id | https://openalex.org/C190470478 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44649824500083923 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2370229 |
| concepts[7].display_name | Invariant (physics) |
| concepts[8].id | https://openalex.org/C78548338 |
| concepts[8].level | 2 |
| concepts[8].score | 0.44460928440093994 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[8].display_name | Data compression |
| concepts[9].id | https://openalex.org/C126255220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4443667531013489 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[9].display_name | Mathematical optimization |
| concepts[10].id | https://openalex.org/C91575142 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4407029151916504 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1971426 |
| concepts[10].display_name | Optimal control |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.349281907081604 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.19725081324577332 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.19397640228271484 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C37914503 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q156495 |
| concepts[14].display_name | Mathematical physics |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/ambiguity |
| keywords[0].score | 0.7044816613197327 |
| keywords[0].display_name | Ambiguity |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6868639588356018 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computation |
| keywords[2].score | 0.640207827091217 |
| keywords[2].display_name | Computation |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.5095391869544983 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.4852449893951416 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/data-set |
| keywords[5].score | 0.46960505843162537 |
| keywords[5].display_name | Data set |
| keywords[6].id | https://openalex.org/keywords/synthetic-data |
| keywords[6].score | 0.46074429154396057 |
| keywords[6].display_name | Synthetic data |
| keywords[7].id | https://openalex.org/keywords/invariant |
| keywords[7].score | 0.44649824500083923 |
| keywords[7].display_name | Invariant (physics) |
| keywords[8].id | https://openalex.org/keywords/data-compression |
| keywords[8].score | 0.44460928440093994 |
| keywords[8].display_name | Data compression |
| keywords[9].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[9].score | 0.4443667531013489 |
| keywords[9].display_name | Mathematical optimization |
| keywords[10].id | https://openalex.org/keywords/optimal-control |
| keywords[10].score | 0.4407029151916504 |
| keywords[10].display_name | Optimal control |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.349281907081604 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.19725081324577332 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.19397640228271484 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.23919/acc50511.2021.9483139 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 American Control Conference (ACC) |
| locations[0].landing_page_url | https://doi.org/10.23919/acc50511.2021.9483139 |
| locations[1].id | pmh:oai:arXiv.org:2005.09393 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2005.09393 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2005.09393 |
| locations[2].id | mag:3088894099 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | https://arxiv.org/pdf/2005.09393.pdf |
| locations[3].id | doi:10.48550/arxiv.2005.09393 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2005.09393 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5056468963 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9911-4758 |
| authorships[0].author.display_name | Filippo Fabiani |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I40120149, https://openalex.org/I4210146410 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Oxford,Department of Engineering Science,United Kingdom,OX1 3PJ |
| authorships[0].institutions[0].id | https://openalex.org/I4210146410 |
| authorships[0].institutions[0].ror | https://ror.org/04j8yhy50 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210146410 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Science Oxford |
| authorships[0].institutions[1].id | https://openalex.org/I40120149 |
| authorships[0].institutions[1].ror | https://ror.org/052gg0110 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I40120149 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | University of Oxford |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Filippo Fabiani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Oxford,Department of Engineering Science,United Kingdom,OX1 3PJ |
| authorships[1].author.id | https://openalex.org/A5001694225 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0456-4124 |
| authorships[1].author.display_name | Paul J. Goulart |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I40120149, https://openalex.org/I4210146410 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Oxford,Department of Engineering Science,United Kingdom,OX1 3PJ |
| authorships[1].institutions[0].id | https://openalex.org/I4210146410 |
| authorships[1].institutions[0].ror | https://ror.org/04j8yhy50 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210146410 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Science Oxford |
| authorships[1].institutions[1].id | https://openalex.org/I40120149 |
| authorships[1].institutions[1].ror | https://ror.org/052gg0110 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I40120149 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | University of Oxford |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Paul J. Goulart |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Oxford,Department of Engineering Science,United Kingdom,OX1 3PJ |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2005.09393 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The optimal transport paradigm enables data compression in data-driven robust control |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10597 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9918000102043152 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Nuclear reactor physics and engineering |
| related_works | https://openalex.org/W3185323650, https://openalex.org/W3097691326, https://openalex.org/W2995764727, https://openalex.org/W2979207987, https://openalex.org/W2967875632, https://openalex.org/W1983313164, https://openalex.org/W2734426901, https://openalex.org/W2741835375, https://openalex.org/W2896332444, https://openalex.org/W3181131484, https://openalex.org/W2950646793, https://openalex.org/W1537611227, https://openalex.org/W3003974660, https://openalex.org/W2973341869, https://openalex.org/W2962952068, https://openalex.org/W3197795948, https://openalex.org/W2774205788, https://openalex.org/W3104329975, https://openalex.org/W3209127297, https://openalex.org/W2999308398 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2005.09393 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2005.09393 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2005.09393 |
| primary_location.id | doi:10.23919/acc50511.2021.9483139 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 American Control Conference (ACC) |
| primary_location.landing_page_url | https://doi.org/10.23919/acc50511.2021.9483139 |
| publication_date | 2021-05-25 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2001947364, https://openalex.org/W2004475000, https://openalex.org/W1587559447, https://openalex.org/W2104735009, https://openalex.org/W1973980088, https://openalex.org/W1898582941, https://openalex.org/W2557055507, https://openalex.org/W2963450292, https://openalex.org/W2972609400, https://openalex.org/W2999535065, https://openalex.org/W3001311638, https://openalex.org/W2967875632, https://openalex.org/W2053186076, https://openalex.org/W2952672134, https://openalex.org/W2995764727, https://openalex.org/W1982032418, https://openalex.org/W2979207987, https://openalex.org/W6636708570, https://openalex.org/W6682962330, https://openalex.org/W2040964549, https://openalex.org/W6781588834, https://openalex.org/W2417426974, https://openalex.org/W2793477525, https://openalex.org/W2079557531, https://openalex.org/W3046539130, https://openalex.org/W2023901033, https://openalex.org/W562660536, https://openalex.org/W2158131535, https://openalex.org/W1629559917, https://openalex.org/W2133478409, https://openalex.org/W1585160083, https://openalex.org/W1603765807 |
| referenced_works_count | 32 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 28, 43, 89 |
| abstract_inverted_index.We | 31, 86 |
| abstract_inverted_index.an | 33, 119 |
| abstract_inverted_index.as | 106 |
| abstract_inverted_index.at | 110 |
| abstract_inverted_index.be | 59 |
| abstract_inverted_index.by | 12, 68, 118 |
| abstract_inverted_index.is | 136 |
| abstract_inverted_index.of | 21, 47, 56, 103, 113 |
| abstract_inverted_index.on | 77 |
| abstract_inverted_index.to | 42, 51, 58, 138 |
| abstract_inverted_index.and | 82, 122 |
| abstract_inverted_index.are | 66 |
| abstract_inverted_index.but | 146 |
| abstract_inverted_index.et\ | 14 |
| abstract_inverted_index.for | 5, 37 |
| abstract_inverted_index.law | 93 |
| abstract_inverted_index.new | 1 |
| abstract_inverted_index.one | 140 |
| abstract_inverted_index.set | 117 |
| abstract_inverted_index.the | 18, 53, 63, 70, 79, 83, 96, 100, 107, 111, 115, 129, 133, 139, 143 |
| abstract_inverted_index.al., | 15 |
| abstract_inverted_index.both | 78 |
| abstract_inverted_index.data | 65, 98, 135 |
| abstract_inverted_index.from | 27 |
| abstract_inverted_index.less | 149 |
| abstract_inverted_index.one. | 85 |
| abstract_inverted_index.over | 23 |
| abstract_inverted_index.same | 101 |
| abstract_inverted_index.show | 87 |
| abstract_inverted_index.such | 39 |
| abstract_inverted_index.that | 88, 128 |
| abstract_inverted_index.type | 102 |
| abstract_inverted_index.upon | 17 |
| abstract_inverted_index.with | 132, 142, 147 |
| abstract_inverted_index.adopt | 32 |
| abstract_inverted_index.data, | 145 |
| abstract_inverted_index.drawn | 26 |
| abstract_inverted_index.large | 29, 40 |
| abstract_inverted_index.pairs | 25 |
| abstract_inverted_index.price | 112 |
| abstract_inverted_index.using | 95 |
| abstract_inverted_index.aiming | 50 |
| abstract_inverted_index.atomic | 74 |
| abstract_inverted_index.builds | 16 |
| abstract_inverted_index.burden | 55 |
| abstract_inverted_index.direct | 19 |
| abstract_inverted_index.easily | 120 |
| abstract_inverted_index.enjoys | 99 |
| abstract_inverted_index.linear | 7 |
| abstract_inverted_index.method | 36 |
| abstract_inverted_index.robust | 91 |
| abstract_inverted_index.Coulson | 13 |
| abstract_inverted_index.between | 73 |
| abstract_inverted_index.confirm | 127 |
| abstract_inverted_index.control | 3, 92, 130 |
| abstract_inverted_index.dataset | 41, 46, 81 |
| abstract_inverted_index.online. | 61 |
| abstract_inverted_index.optimal | 34 |
| abstract_inverted_index.smaller | 44 |
| abstract_inverted_index.computed | 94 |
| abstract_inverted_index.dataset, | 109 |
| abstract_inverted_index.dataset. | 30 |
| abstract_inverted_index.distance | 72 |
| abstract_inverted_index.obtained | 141 |
| abstract_inverted_index.original | 80, 108, 144 |
| abstract_inverted_index.recently | 10 |
| abstract_inverted_index.systems, | 9 |
| abstract_inverted_index.Numerical | 125 |
| abstract_inverted_index.alleviate | 52 |
| abstract_inverted_index.ambiguity | 116 |
| abstract_inverted_index.conceived | 11 |
| abstract_inverted_index.enlarging | 114 |
| abstract_inverted_index.quantity. | 124 |
| abstract_inverted_index.required. | 151 |
| abstract_inverted_index.supported | 76 |
| abstract_inverted_index.synthetic | 45, 64, 134 |
| abstract_inverted_index.technique | 4 |
| abstract_inverted_index.uncertain | 6 |
| abstract_inverted_index.comparable | 137 |
| abstract_inverted_index.compressed | 84, 97 |
| abstract_inverted_index.computable | 121 |
| abstract_inverted_index.determined | 67 |
| abstract_inverted_index.guarantees | 105 |
| abstract_inverted_index.minimizing | 69 |
| abstract_inverted_index.Wasserstein | 71 |
| abstract_inverted_index.behaviours, | 49 |
| abstract_inverted_index.compressing | 38 |
| abstract_inverted_index.computation | 150 |
| abstract_inverted_index.controllers | 22, 57 |
| abstract_inverted_index.implemented | 60 |
| abstract_inverted_index.performance | 104, 131 |
| abstract_inverted_index.simulations | 126 |
| abstract_inverted_index.data-enabled | 2 |
| abstract_inverted_index.input/output | 24 |
| abstract_inverted_index.optimization | 20 |
| abstract_inverted_index.well-behaved | 123 |
| abstract_inverted_index.Specifically, | 62 |
| abstract_inverted_index.computational | 54 |
| abstract_inverted_index.distributions | 75 |
| abstract_inverted_index.significantly | 148 |
| abstract_inverted_index.representative | 48 |
| abstract_inverted_index.time-invariant | 8 |
| abstract_inverted_index.transport-based | 35 |
| abstract_inverted_index.distributionally | 90 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.83884865 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |