The original data used in this study. Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0322851.s001
This study aims to address the challenge of monitoring Plant Height (PH), SPAD, Leaf Area Index (LAI), and Above-Ground Biomass (AGB) in Gerbera under greenhouse cultivation conditions. We initially gathered multi-spectral images and corresponding ground truth data of these parameters at various growth stages using a low-altitude UAV. From the collected images, we derived five Vegetation Indices (VIs): NDVI, GNDVI, LCI, NDRE, and OSAVI, and extracted their textural features as fusion features. An adaptive ensemble model, OBM-RFEcv, was then developed by integrating six base models (Linear Regression, Decision Tree Regressor, Random Forest Regressor, XGBoost Regressor, and Support Vector Regressor) with Recursive Feature Elimination (RFE) to predict the key growth indicators. The results indicate that the OBM-RFEcv model outperforms the other models when using the fusion of the five VIs, particularly in the test dataset, where it achieved the highest accuracy for PH (NDVI), SPAD (GNDVI), LAI (GNDVI), and AGB (NDRE) with R2 values of 0.92, 0.90, 0.89, and 0.93, respectively. The root mean square error (RMSE) values were 0.04, 0.07, 0.08, and 0.07, respectively, showing improvements over the best individual model by 0.01, 0.03, 0.01, and 0.09 in R2, and reductions in RMSE by 0.01, 0.07, 0.08, and 0.03, respectively. These findings confirm that the OBM-RFEcv model, based on multi-spectral image fusion, effectively monitors key growth indicators in Gerbera, providing a non-invasive and precise method for greenhouse crop monitoring.
Related Topics
- Type
- dataset
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W7111123978
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7111123978Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0322851.s001Digital Object Identifier
- Title
-
The original data used in this study.Work title
- Type
-
datasetOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-20Full publication date if available
- Authors
-
Xinrui Wang (488330), Yingming Shen (18982004), Peng Tian (119465), Mengyao Wu (808514), Zhaowen Li (3727747), Jiawei Zhao (363439), Jihong Sun (344786), Ye Qian (7400186)List of authors in order
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- Concepts
-
Mean squared error, Greenhouse, Key (lock), Vegetation (pathology), Random forest, Ground truth, Decision tree, Mathematics, Sensor fusion, Leaf area index, Feature (linguistics), Tree (set theory), Remote sensing, Statistics, Data mining, Normalized Difference Vegetation Index, Index (typography), Computer science, Artificial intelligence, Biomass (ecology), Vegetation Index, Gerbera, Data modeling, Support vector machine, Information gain ratio, Base (topology), Agricultural engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W7111123978 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0322851.s001 |
| ids.openalex | https://openalex.org/W7111123978 |
| fwci | |
| type | dataset |
| title | The original data used in this study. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C139945424 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5909045934677124 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[0].display_name | Mean squared error |
| concepts[1].id | https://openalex.org/C32198211 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5899749994277954 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q165044 |
| concepts[1].display_name | Greenhouse |
| concepts[2].id | https://openalex.org/C26517878 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4887113571166992 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[2].display_name | Key (lock) |
| concepts[3].id | https://openalex.org/C2776133958 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48816660046577454 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7918366 |
| concepts[3].display_name | Vegetation (pathology) |
| concepts[4].id | https://openalex.org/C169258074 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48736006021499634 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[4].display_name | Random forest |
| concepts[5].id | https://openalex.org/C146849305 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4822569489479065 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q370766 |
| concepts[5].display_name | Ground truth |
| concepts[6].id | https://openalex.org/C84525736 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4521116018295288 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q831366 |
| concepts[6].display_name | Decision tree |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4432741701602936 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C33954974 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4278118908405304 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q486494 |
| concepts[8].display_name | Sensor fusion |
| concepts[9].id | https://openalex.org/C25989453 |
| concepts[9].level | 2 |
| concepts[9].score | 0.39604347944259644 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q446746 |
| concepts[9].display_name | Leaf area index |
| concepts[10].id | https://openalex.org/C2776401178 |
| concepts[10].level | 2 |
| concepts[10].score | 0.38014349341392517 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[10].display_name | Feature (linguistics) |
| concepts[11].id | https://openalex.org/C113174947 |
| concepts[11].level | 2 |
| concepts[11].score | 0.36675986647605896 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[11].display_name | Tree (set theory) |
| concepts[12].id | https://openalex.org/C62649853 |
| concepts[12].level | 1 |
| concepts[12].score | 0.36143967509269714 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[12].display_name | Remote sensing |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3588176965713501 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3515247702598572 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C1549246 |
| concepts[15].level | 3 |
| concepts[15].score | 0.3432970345020294 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q718775 |
| concepts[15].display_name | Normalized Difference Vegetation Index |
| concepts[16].id | https://openalex.org/C2777382242 |
| concepts[16].level | 2 |
| concepts[16].score | 0.33368316292762756 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q6017816 |
| concepts[16].display_name | Index (typography) |
| concepts[17].id | https://openalex.org/C41008148 |
| concepts[17].level | 0 |
| concepts[17].score | 0.3320049047470093 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[17].display_name | Computer science |
| concepts[18].id | https://openalex.org/C154945302 |
| concepts[18].level | 1 |
| concepts[18].score | 0.3065319359302521 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[18].display_name | Artificial intelligence |
| concepts[19].id | https://openalex.org/C115540264 |
| concepts[19].level | 2 |
| concepts[19].score | 0.3018427789211273 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2945560 |
| concepts[19].display_name | Biomass (ecology) |
| concepts[20].id | https://openalex.org/C2780376076 |
| concepts[20].level | 4 |
| concepts[20].score | 0.2923280894756317 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1499458 |
| concepts[20].display_name | Vegetation Index |
| concepts[21].id | https://openalex.org/C2778846783 |
| concepts[21].level | 2 |
| concepts[21].score | 0.29057395458221436 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q310654 |
| concepts[21].display_name | Gerbera |
| concepts[22].id | https://openalex.org/C67186912 |
| concepts[22].level | 2 |
| concepts[22].score | 0.287320613861084 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q367664 |
| concepts[22].display_name | Data modeling |
| concepts[23].id | https://openalex.org/C12267149 |
| concepts[23].level | 2 |
| concepts[23].score | 0.2746257781982422 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[23].display_name | Support vector machine |
| concepts[24].id | https://openalex.org/C202185110 |
| concepts[24].level | 3 |
| concepts[24].score | 0.273578941822052 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q6031086 |
| concepts[24].display_name | Information gain ratio |
| concepts[25].id | https://openalex.org/C42058472 |
| concepts[25].level | 2 |
| concepts[25].score | 0.2685193419456482 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q810214 |
| concepts[25].display_name | Base (topology) |
| concepts[26].id | https://openalex.org/C88463610 |
| concepts[26].level | 1 |
| concepts[26].score | 0.25375908613204956 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[26].display_name | Agricultural engineering |
| keywords[0].id | https://openalex.org/keywords/mean-squared-error |
| keywords[0].score | 0.5909045934677124 |
| keywords[0].display_name | Mean squared error |
| keywords[1].id | https://openalex.org/keywords/greenhouse |
| keywords[1].score | 0.5899749994277954 |
| keywords[1].display_name | Greenhouse |
| keywords[2].id | https://openalex.org/keywords/key |
| keywords[2].score | 0.4887113571166992 |
| keywords[2].display_name | Key (lock) |
| keywords[3].id | https://openalex.org/keywords/vegetation |
| keywords[3].score | 0.48816660046577454 |
| keywords[3].display_name | Vegetation (pathology) |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.48736006021499634 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/ground-truth |
| keywords[5].score | 0.4822569489479065 |
| keywords[5].display_name | Ground truth |
| keywords[6].id | https://openalex.org/keywords/decision-tree |
| keywords[6].score | 0.4521116018295288 |
| keywords[6].display_name | Decision tree |
| keywords[7].id | https://openalex.org/keywords/sensor-fusion |
| keywords[7].score | 0.4278118908405304 |
| keywords[7].display_name | Sensor fusion |
| language | |
| locations[0].id | pmh:oai:figshare.com:article/29112607 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400572 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| locations[0].source.host_organization | https://openalex.org/I196829312 |
| locations[0].source.host_organization_name | La Trobe University |
| locations[0].source.host_organization_lineage | https://openalex.org/I196829312 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | |
| authorships[0].author.id | |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Xinrui Wang (488330) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xinrui Wang (488330) |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yingming Shen (18982004) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yingming Shen (18982004) |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Peng Tian (119465) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Peng Tian (119465) |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mengyao Wu (808514) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mengyao Wu (808514) |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Zhaowen Li (3727747) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhaowen Li (3727747) |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jiawei Zhao (363439) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiawei Zhao (363439) |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Jihong Sun (344786) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jihong Sun (344786) |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Ye Qian (7400186) |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Ye Qian (7400186) |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-10T00:00:00 |
| display_name | The original data used in this study. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-10T02:49:46.989445 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:figshare.com:article/29112607 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400572 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| best_oa_location.source.host_organization | https://openalex.org/I196829312 |
| best_oa_location.source.host_organization_name | La Trobe University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | |
| primary_location.id | pmh:oai:figshare.com:article/29112607 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400572 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | OPAL (Open@LaTrobe) (La Trobe University) |
| primary_location.source.host_organization | https://openalex.org/I196829312 |
| primary_location.source.host_organization_name | La Trobe University |
| primary_location.source.host_organization_lineage | https://openalex.org/I196829312 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | |
| publication_date | 2025-05-20 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 46, 221 |
| abstract_inverted_index.An | 73 |
| abstract_inverted_index.PH | 142 |
| abstract_inverted_index.We | 28 |
| abstract_inverted_index.as | 70 |
| abstract_inverted_index.at | 41 |
| abstract_inverted_index.by | 81, 182, 194 |
| abstract_inverted_index.in | 22, 131, 188, 192, 218 |
| abstract_inverted_index.it | 136 |
| abstract_inverted_index.of | 8, 38, 126, 154 |
| abstract_inverted_index.on | 209 |
| abstract_inverted_index.to | 4, 105 |
| abstract_inverted_index.we | 53 |
| abstract_inverted_index.AGB | 149 |
| abstract_inverted_index.LAI | 146 |
| abstract_inverted_index.The | 111, 161 |
| abstract_inverted_index.and | 18, 33, 63, 65, 96, 148, 158, 172, 186, 190, 198, 223 |
| abstract_inverted_index.for | 141, 226 |
| abstract_inverted_index.key | 108, 215 |
| abstract_inverted_index.six | 83 |
| abstract_inverted_index.the | 6, 50, 107, 115, 119, 124, 127, 132, 138, 178, 205 |
| abstract_inverted_index.was | 78 |
| abstract_inverted_index.0.09 | 187 |
| abstract_inverted_index.Area | 15 |
| abstract_inverted_index.From | 49 |
| abstract_inverted_index.LCI, | 61 |
| abstract_inverted_index.Leaf | 14 |
| abstract_inverted_index.RMSE | 193 |
| abstract_inverted_index.SPAD | 144 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.Tree | 89 |
| abstract_inverted_index.UAV. | 48 |
| abstract_inverted_index.VIs, | 129 |
| abstract_inverted_index.aims | 3 |
| abstract_inverted_index.base | 84 |
| abstract_inverted_index.best | 179 |
| abstract_inverted_index.crop | 228 |
| abstract_inverted_index.data | 37 |
| abstract_inverted_index.five | 55, 128 |
| abstract_inverted_index.mean | 163 |
| abstract_inverted_index.over | 177 |
| abstract_inverted_index.root | 162 |
| abstract_inverted_index.test | 133 |
| abstract_inverted_index.that | 114, 204 |
| abstract_inverted_index.then | 79 |
| abstract_inverted_index.were | 168 |
| abstract_inverted_index.when | 122 |
| abstract_inverted_index.with | 100, 151 |
| abstract_inverted_index.(AGB) | 21 |
| abstract_inverted_index.(PH), | 12 |
| abstract_inverted_index.(RFE) | 104 |
| abstract_inverted_index.0.01, | 183, 185, 195 |
| abstract_inverted_index.0.03, | 184, 199 |
| abstract_inverted_index.0.04, | 169 |
| abstract_inverted_index.0.07, | 170, 173, 196 |
| abstract_inverted_index.0.08, | 171, 197 |
| abstract_inverted_index.0.89, | 157 |
| abstract_inverted_index.0.90, | 156 |
| abstract_inverted_index.0.92, | 155 |
| abstract_inverted_index.0.93, | 159 |
| abstract_inverted_index.<div> | 0 |
| abstract_inverted_index.Index | 16 |
| abstract_inverted_index.NDRE, | 62 |
| abstract_inverted_index.NDVI, | 59 |
| abstract_inverted_index.Plant | 10 |
| abstract_inverted_index.SPAD, | 13 |
| abstract_inverted_index.These | 201 |
| abstract_inverted_index.based | 208 |
| abstract_inverted_index.error | 165 |
| abstract_inverted_index.image | 211 |
| abstract_inverted_index.model | 117, 181 |
| abstract_inverted_index.other | 120 |
| abstract_inverted_index.study | 2 |
| abstract_inverted_index.their | 67 |
| abstract_inverted_index.these | 39 |
| abstract_inverted_index.truth | 36 |
| abstract_inverted_index.under | 24 |
| abstract_inverted_index.using | 45, 123 |
| abstract_inverted_index.where | 135 |
| abstract_inverted_index.(LAI), | 17 |
| abstract_inverted_index.(NDRE) | 150 |
| abstract_inverted_index.(RMSE) | 166 |
| abstract_inverted_index.(VIs): | 58 |
| abstract_inverted_index.</div> | 230 |
| abstract_inverted_index.Forest | 92 |
| abstract_inverted_index.GNDVI, | 60 |
| abstract_inverted_index.Height | 11 |
| abstract_inverted_index.OSAVI, | 64 |
| abstract_inverted_index.Random | 91 |
| abstract_inverted_index.Vector | 98 |
| abstract_inverted_index.fusion | 71, 125 |
| abstract_inverted_index.ground | 35 |
| abstract_inverted_index.growth | 43, 109, 216 |
| abstract_inverted_index.images | 32 |
| abstract_inverted_index.method | 225 |
| abstract_inverted_index.model, | 76, 207 |
| abstract_inverted_index.models | 85, 121 |
| abstract_inverted_index.square | 164 |
| abstract_inverted_index.stages | 44 |
| abstract_inverted_index.values | 153, 167 |
| abstract_inverted_index.(Linear | 86 |
| abstract_inverted_index.(NDVI), | 143 |
| abstract_inverted_index.Biomass | 20 |
| abstract_inverted_index.Feature | 102 |
| abstract_inverted_index.Gerbera | 23 |
| abstract_inverted_index.Indices | 57 |
| abstract_inverted_index.Support | 97 |
| abstract_inverted_index.XGBoost | 94 |
| abstract_inverted_index.address | 5 |
| abstract_inverted_index.confirm | 203 |
| abstract_inverted_index.derived | 54 |
| abstract_inverted_index.fusion, | 212 |
| abstract_inverted_index.highest | 139 |
| abstract_inverted_index.images, | 52 |
| abstract_inverted_index.precise | 224 |
| abstract_inverted_index.predict | 106 |
| abstract_inverted_index.results | 112 |
| abstract_inverted_index.showing | 175 |
| abstract_inverted_index.various | 42 |
| abstract_inverted_index.(GNDVI), | 145, 147 |
| abstract_inverted_index.Decision | 88 |
| abstract_inverted_index.Gerbera, | 219 |
| abstract_inverted_index.accuracy | 140 |
| abstract_inverted_index.achieved | 137 |
| abstract_inverted_index.adaptive | 74 |
| abstract_inverted_index.dataset, | 134 |
| abstract_inverted_index.ensemble | 75 |
| abstract_inverted_index.features | 69 |
| abstract_inverted_index.findings | 202 |
| abstract_inverted_index.gathered | 30 |
| abstract_inverted_index.indicate | 113 |
| abstract_inverted_index.monitors | 214 |
| abstract_inverted_index.textural | 68 |
| abstract_inverted_index.OBM-RFEcv | 116, 206 |
| abstract_inverted_index.Recursive | 101 |
| abstract_inverted_index.challenge | 7 |
| abstract_inverted_index.collected | 51 |
| abstract_inverted_index.developed | 80 |
| abstract_inverted_index.extracted | 66 |
| abstract_inverted_index.features. | 72 |
| abstract_inverted_index.initially | 29 |
| abstract_inverted_index.providing | 220 |
| abstract_inverted_index.OBM-RFEcv, | 77 |
| abstract_inverted_index.Regressor) | 99 |
| abstract_inverted_index.Regressor, | 90, 93, 95 |
| abstract_inverted_index.Vegetation | 56 |
| abstract_inverted_index.greenhouse | 25, 227 |
| abstract_inverted_index.indicators | 217 |
| abstract_inverted_index.individual | 180 |
| abstract_inverted_index.monitoring | 9 |
| abstract_inverted_index.parameters | 40 |
| abstract_inverted_index.reductions | 191 |
| abstract_inverted_index.Elimination | 103 |
| abstract_inverted_index.Regression, | 87 |
| abstract_inverted_index.conditions. | 27 |
| abstract_inverted_index.cultivation | 26 |
| abstract_inverted_index.effectively | 213 |
| abstract_inverted_index.indicators. | 110 |
| abstract_inverted_index.integrating | 82 |
| abstract_inverted_index.monitoring. | 229 |
| abstract_inverted_index.outperforms | 118 |
| abstract_inverted_index.Above-Ground | 19 |
| abstract_inverted_index.improvements | 176 |
| abstract_inverted_index.low-altitude | 47 |
| abstract_inverted_index.non-invasive | 222 |
| abstract_inverted_index.particularly | 130 |
| abstract_inverted_index.R<sup>2</sup> | 152 |
| abstract_inverted_index.corresponding | 34 |
| abstract_inverted_index.respectively, | 174 |
| abstract_inverted_index.respectively. | 160, 200 |
| abstract_inverted_index.R<sup>2</sup>, | 189 |
| abstract_inverted_index.multi-spectral | 31, 210 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |