THE PARALLEL IMPLEMENTATION OF ALGORITHMS FOR FINDING THE REFLECTION SYMMETRY OF THE BINARY IMAGES Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xlii-2-w4-179-2017
In this paper, we investigate the exact method of searching an axis of binary image symmetry, based on brute-force search among all potential symmetry axes. As a measure of symmetry, we use the set-theoretic Jaccard similarity applied to two subsets of pixels of the image which is divided by some axis. Brute-force search algorithm definitely finds the axis of approximate symmetry which could be considered as ground-truth, but it requires quite a lot of time to process each image. As a first step of our contribution we develop the parallel version of the brute-force algorithm. It allows us to process large image databases and obtain the desired axis of approximate symmetry for each shape in database. Experimental studies implemented on “Butterflies” and “Flavia” datasets have shown that the proposed algorithm takes several minutes per image to find a symmetry axis. However, in case of real-world applications we need computational efficiency which allows solving the task of symmetry axis search in real or quasi-real time. So, for the task of fast shape symmetry calculation on the common multicore PC we elaborated another parallel program, which based on the procedure suggested before in (Fedotova, 2016). That method takes as an initial axis the axis obtained by superfast comparison of two skeleton primitive sub-chains. This process takes about 0.5 sec on the common PC, it is considerably faster than any of the optimized brute-force methods including ones implemented in supercomputer. In our experiments for 70 percent of cases the found axis coincides with the ground-truth one absolutely, and for the rest of cases it is very close to the ground-truth.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xlii-2-w4-179-2017
- https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W4/179/2017/isprs-archives-XLII-2-W4-179-2017.pdf
- OA Status
- diamond
- Cited By
- 1
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2612350918
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2612350918Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xlii-2-w4-179-2017Digital Object Identifier
- Title
-
THE PARALLEL IMPLEMENTATION OF ALGORITHMS FOR FINDING THE REFLECTION SYMMETRY OF THE BINARY IMAGESWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-05-10Full publication date if available
- Authors
-
Sofia Fedotova, Oleg Seredin, Olesia KushnirList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xlii-2-w4-179-2017Publisher landing page
- PDF URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W4/179/2017/isprs-archives-XLII-2-W4-179-2017.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W4/179/2017/isprs-archives-XLII-2-W4-179-2017.pdfDirect OA link when available
- Concepts
-
Algorithm, Symmetry (geometry), Computer science, Reflection symmetry, Image (mathematics), Brute force, Binary number, Process (computing), Pixel, Jaccard index, Set (abstract data type), Mathematics, Artificial intelligence, Geometry, Pattern recognition (psychology), Arithmetic, Computer security, Programming language, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2019: 1Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2612350918 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xlii-2-w4-179-2017 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xlii-2-w4-179-2017 |
| ids.mag | 2612350918 |
| ids.openalex | https://openalex.org/W2612350918 |
| fwci | 0.12711022 |
| type | article |
| title | THE PARALLEL IMPLEMENTATION OF ALGORITHMS FOR FINDING THE REFLECTION SYMMETRY OF THE BINARY IMAGES |
| biblio.issue | |
| biblio.volume | XLII-2/W4 |
| biblio.last_page | 184 |
| biblio.first_page | 179 |
| topics[0].id | https://openalex.org/T10824 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9763000011444092 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image Retrieval and Classification Techniques |
| topics[1].id | https://openalex.org/T14438 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9544000029563904 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1106 |
| topics[1].subfield.display_name | Food Science |
| topics[1].display_name | Advanced Scientific Research Methods |
| topics[2].id | https://openalex.org/T13608 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.946399986743927 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Advanced Computational Techniques in Science and Engineering |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C11413529 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6802099943161011 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[0].display_name | Algorithm |
| concepts[1].id | https://openalex.org/C2779886137 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6380991339683533 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21030012 |
| concepts[1].display_name | Symmetry (geometry) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6266781091690063 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C133978748 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5346758961677551 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q15955882 |
| concepts[3].display_name | Reflection symmetry |
| concepts[4].id | https://openalex.org/C115961682 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49072539806365967 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[4].display_name | Image (mathematics) |
| concepts[5].id | https://openalex.org/C2986801135 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48428934812545776 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1209494 |
| concepts[5].display_name | Brute force |
| concepts[6].id | https://openalex.org/C48372109 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48353028297424316 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[6].display_name | Binary number |
| concepts[7].id | https://openalex.org/C98045186 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46612998843193054 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[7].display_name | Process (computing) |
| concepts[8].id | https://openalex.org/C160633673 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42511337995529175 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[8].display_name | Pixel |
| concepts[9].id | https://openalex.org/C203519979 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4224511384963989 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q865360 |
| concepts[9].display_name | Jaccard index |
| concepts[10].id | https://openalex.org/C177264268 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41166257858276367 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[10].display_name | Set (abstract data type) |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.32808464765548706 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.29438352584838867 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.21697339415550232 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| concepts[14].id | https://openalex.org/C153180895 |
| concepts[14].level | 2 |
| concepts[14].score | 0.18004482984542847 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[14].display_name | Pattern recognition (psychology) |
| concepts[15].id | https://openalex.org/C94375191 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09542983770370483 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[15].display_name | Arithmetic |
| concepts[16].id | https://openalex.org/C38652104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[16].display_name | Computer security |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/algorithm |
| keywords[0].score | 0.6802099943161011 |
| keywords[0].display_name | Algorithm |
| keywords[1].id | https://openalex.org/keywords/symmetry |
| keywords[1].score | 0.6380991339683533 |
| keywords[1].display_name | Symmetry (geometry) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6266781091690063 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/reflection-symmetry |
| keywords[3].score | 0.5346758961677551 |
| keywords[3].display_name | Reflection symmetry |
| keywords[4].id | https://openalex.org/keywords/image |
| keywords[4].score | 0.49072539806365967 |
| keywords[4].display_name | Image (mathematics) |
| keywords[5].id | https://openalex.org/keywords/brute-force |
| keywords[5].score | 0.48428934812545776 |
| keywords[5].display_name | Brute force |
| keywords[6].id | https://openalex.org/keywords/binary-number |
| keywords[6].score | 0.48353028297424316 |
| keywords[6].display_name | Binary number |
| keywords[7].id | https://openalex.org/keywords/process |
| keywords[7].score | 0.46612998843193054 |
| keywords[7].display_name | Process (computing) |
| keywords[8].id | https://openalex.org/keywords/pixel |
| keywords[8].score | 0.42511337995529175 |
| keywords[8].display_name | Pixel |
| keywords[9].id | https://openalex.org/keywords/jaccard-index |
| keywords[9].score | 0.4224511384963989 |
| keywords[9].display_name | Jaccard index |
| keywords[10].id | https://openalex.org/keywords/set |
| keywords[10].score | 0.41166257858276367 |
| keywords[10].display_name | Set (abstract data type) |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.32808464765548706 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.29438352584838867 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/geometry |
| keywords[13].score | 0.21697339415550232 |
| keywords[13].display_name | Geometry |
| keywords[14].id | https://openalex.org/keywords/pattern-recognition |
| keywords[14].score | 0.18004482984542847 |
| keywords[14].display_name | Pattern recognition (psychology) |
| keywords[15].id | https://openalex.org/keywords/arithmetic |
| keywords[15].score | 0.09542983770370483 |
| keywords[15].display_name | Arithmetic |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xlii-2-w4-179-2017 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W4/179/2017/isprs-archives-XLII-2-W4-179-2017.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-2-w4-179-2017 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5061858914 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3436-6540 |
| authorships[0].author.display_name | Sofia Fedotova |
| authorships[0].countries | RU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I127366699 |
| authorships[0].affiliations[0].raw_affiliation_string | Tula State University, 300012, Tula, Lenin Ave., 92, Russia |
| authorships[0].institutions[0].id | https://openalex.org/I127366699 |
| authorships[0].institutions[0].ror | https://ror.org/05shr3z13 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I127366699 |
| authorships[0].institutions[0].country_code | RU |
| authorships[0].institutions[0].display_name | Tula State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | S. Fedotova |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Tula State University, 300012, Tula, Lenin Ave., 92, Russia |
| authorships[1].author.id | https://openalex.org/A5045892613 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0410-7705 |
| authorships[1].author.display_name | Oleg Seredin |
| authorships[1].countries | RU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I127366699 |
| authorships[1].affiliations[0].raw_affiliation_string | Tula State University, 300012, Tula, Lenin Ave., 92, Russia |
| authorships[1].institutions[0].id | https://openalex.org/I127366699 |
| authorships[1].institutions[0].ror | https://ror.org/05shr3z13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I127366699 |
| authorships[1].institutions[0].country_code | RU |
| authorships[1].institutions[0].display_name | Tula State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | O. Seredin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Tula State University, 300012, Tula, Lenin Ave., 92, Russia |
| authorships[2].author.id | https://openalex.org/A5009545489 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7879-9463 |
| authorships[2].author.display_name | Olesia Kushnir |
| authorships[2].countries | RU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I127366699 |
| authorships[2].affiliations[0].raw_affiliation_string | Tula State University, 300012, Tula, Lenin Ave., 92, Russia |
| authorships[2].institutions[0].id | https://openalex.org/I127366699 |
| authorships[2].institutions[0].ror | https://ror.org/05shr3z13 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I127366699 |
| authorships[2].institutions[0].country_code | RU |
| authorships[2].institutions[0].display_name | Tula State University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | O. Kushnir |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Tula State University, 300012, Tula, Lenin Ave., 92, Russia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W4/179/2017/isprs-archives-XLII-2-W4-179-2017.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | THE PARALLEL IMPLEMENTATION OF ALGORITHMS FOR FINDING THE REFLECTION SYMMETRY OF THE BINARY IMAGES |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10824 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9763000011444092 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image Retrieval and Classification Techniques |
| related_works | https://openalex.org/W2105860741, https://openalex.org/W649143900, https://openalex.org/W4287206313, https://openalex.org/W3163798933, https://openalex.org/W2545569975, https://openalex.org/W2944239601, https://openalex.org/W4220988720, https://openalex.org/W3168648756, https://openalex.org/W4297337237, https://openalex.org/W4312386572 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2019 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5194/isprs-archives-xlii-2-w4-179-2017 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W4/179/2017/isprs-archives-XLII-2-W4-179-2017.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-2-w4-179-2017 |
| primary_location.id | doi:10.5194/isprs-archives-xlii-2-w4-179-2017 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W4/179/2017/isprs-archives-XLII-2-W4-179-2017.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-2-w4-179-2017 |
| publication_date | 2017-05-10 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2133874797, https://openalex.org/W6633554307, https://openalex.org/W97002856, https://openalex.org/W1968896562, https://openalex.org/W1532296632, https://openalex.org/W2130187917, https://openalex.org/W3022841918, https://openalex.org/W2588759486, https://openalex.org/W1507893791 |
| referenced_works_count | 9 |
| abstract_inverted_index.a | 27, 72, 81, 138 |
| abstract_inverted_index.70 | 242 |
| abstract_inverted_index.As | 26, 80 |
| abstract_inverted_index.In | 1, 238 |
| abstract_inverted_index.It | 96 |
| abstract_inverted_index.PC | 178 |
| abstract_inverted_index.an | 11, 198 |
| abstract_inverted_index.as | 66, 197 |
| abstract_inverted_index.be | 64 |
| abstract_inverted_index.by | 49, 204 |
| abstract_inverted_index.in | 115, 142, 160, 191, 236 |
| abstract_inverted_index.is | 47, 223, 262 |
| abstract_inverted_index.it | 69, 222, 261 |
| abstract_inverted_index.of | 9, 13, 29, 41, 43, 59, 74, 84, 92, 109, 144, 156, 169, 207, 228, 244, 259 |
| abstract_inverted_index.on | 18, 120, 174, 186, 218 |
| abstract_inverted_index.or | 162 |
| abstract_inverted_index.to | 38, 76, 99, 136, 265 |
| abstract_inverted_index.us | 98 |
| abstract_inverted_index.we | 4, 31, 87, 147, 179 |
| abstract_inverted_index.0.5 | 216 |
| abstract_inverted_index.PC, | 221 |
| abstract_inverted_index.So, | 165 |
| abstract_inverted_index.all | 22 |
| abstract_inverted_index.and | 104, 122, 255 |
| abstract_inverted_index.any | 227 |
| abstract_inverted_index.but | 68 |
| abstract_inverted_index.for | 112, 166, 241, 256 |
| abstract_inverted_index.lot | 73 |
| abstract_inverted_index.one | 253 |
| abstract_inverted_index.our | 85, 239 |
| abstract_inverted_index.per | 134 |
| abstract_inverted_index.sec | 217 |
| abstract_inverted_index.the | 6, 33, 44, 57, 89, 93, 106, 128, 154, 167, 175, 187, 201, 219, 229, 246, 251, 257, 266 |
| abstract_inverted_index.two | 39, 208 |
| abstract_inverted_index.use | 32 |
| abstract_inverted_index.That | 194 |
| abstract_inverted_index.This | 212 |
| abstract_inverted_index.axis | 12, 58, 108, 158, 200, 202, 248 |
| abstract_inverted_index.case | 143 |
| abstract_inverted_index.each | 78, 113 |
| abstract_inverted_index.fast | 170 |
| abstract_inverted_index.find | 137 |
| abstract_inverted_index.have | 125 |
| abstract_inverted_index.need | 148 |
| abstract_inverted_index.ones | 234 |
| abstract_inverted_index.real | 161 |
| abstract_inverted_index.rest | 258 |
| abstract_inverted_index.some | 50 |
| abstract_inverted_index.step | 83 |
| abstract_inverted_index.task | 155, 168 |
| abstract_inverted_index.than | 226 |
| abstract_inverted_index.that | 127 |
| abstract_inverted_index.this | 2 |
| abstract_inverted_index.time | 75 |
| abstract_inverted_index.very | 263 |
| abstract_inverted_index.with | 250 |
| abstract_inverted_index.about | 215 |
| abstract_inverted_index.among | 21 |
| abstract_inverted_index.axes. | 25 |
| abstract_inverted_index.axis. | 51, 140 |
| abstract_inverted_index.based | 17, 185 |
| abstract_inverted_index.cases | 245, 260 |
| abstract_inverted_index.close | 264 |
| abstract_inverted_index.could | 63 |
| abstract_inverted_index.exact | 7 |
| abstract_inverted_index.finds | 56 |
| abstract_inverted_index.first | 82 |
| abstract_inverted_index.found | 247 |
| abstract_inverted_index.image | 15, 45, 102, 135 |
| abstract_inverted_index.large | 101 |
| abstract_inverted_index.quite | 71 |
| abstract_inverted_index.shape | 114, 171 |
| abstract_inverted_index.shown | 126 |
| abstract_inverted_index.takes | 131, 196, 214 |
| abstract_inverted_index.time. | 164 |
| abstract_inverted_index.which | 46, 62, 151, 184 |
| abstract_inverted_index.2016). | 193 |
| abstract_inverted_index.allows | 97, 152 |
| abstract_inverted_index.before | 190 |
| abstract_inverted_index.binary | 14 |
| abstract_inverted_index.common | 176, 220 |
| abstract_inverted_index.faster | 225 |
| abstract_inverted_index.image. | 79 |
| abstract_inverted_index.method | 8, 195 |
| abstract_inverted_index.obtain | 105 |
| abstract_inverted_index.paper, | 3 |
| abstract_inverted_index.pixels | 42 |
| abstract_inverted_index.search | 20, 53, 159 |
| abstract_inverted_index.Jaccard | 35 |
| abstract_inverted_index.another | 181 |
| abstract_inverted_index.applied | 37 |
| abstract_inverted_index.desired | 107 |
| abstract_inverted_index.develop | 88 |
| abstract_inverted_index.divided | 48 |
| abstract_inverted_index.initial | 199 |
| abstract_inverted_index.measure | 28 |
| abstract_inverted_index.methods | 232 |
| abstract_inverted_index.minutes | 133 |
| abstract_inverted_index.percent | 243 |
| abstract_inverted_index.process | 77, 100, 213 |
| abstract_inverted_index.several | 132 |
| abstract_inverted_index.solving | 153 |
| abstract_inverted_index.studies | 118 |
| abstract_inverted_index.subsets | 40 |
| abstract_inverted_index.version | 91 |
| abstract_inverted_index.However, | 141 |
| abstract_inverted_index.datasets | 124 |
| abstract_inverted_index.obtained | 203 |
| abstract_inverted_index.parallel | 90, 182 |
| abstract_inverted_index.program, | 183 |
| abstract_inverted_index.proposed | 129 |
| abstract_inverted_index.requires | 70 |
| abstract_inverted_index.skeleton | 209 |
| abstract_inverted_index.symmetry | 24, 61, 111, 139, 157, 172 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.algorithm | 54, 130 |
| abstract_inverted_index.coincides | 249 |
| abstract_inverted_index.database. | 116 |
| abstract_inverted_index.databases | 103 |
| abstract_inverted_index.including | 233 |
| abstract_inverted_index.multicore | 177 |
| abstract_inverted_index.optimized | 230 |
| abstract_inverted_index.potential | 23 |
| abstract_inverted_index.primitive | 210 |
| abstract_inverted_index.procedure | 188 |
| abstract_inverted_index.searching | 10 |
| abstract_inverted_index.suggested | 189 |
| abstract_inverted_index.superfast | 205 |
| abstract_inverted_index.symmetry, | 16, 30 |
| abstract_inverted_index.(Fedotova, | 192 |
| abstract_inverted_index.algorithm. | 95 |
| abstract_inverted_index.comparison | 206 |
| abstract_inverted_index.considered | 65 |
| abstract_inverted_index.definitely | 55 |
| abstract_inverted_index.efficiency | 150 |
| abstract_inverted_index.elaborated | 180 |
| abstract_inverted_index.quasi-real | 163 |
| abstract_inverted_index.real-world | 145 |
| abstract_inverted_index.similarity | 36 |
| abstract_inverted_index.Brute-force | 52 |
| abstract_inverted_index.absolutely, | 254 |
| abstract_inverted_index.approximate | 60, 110 |
| abstract_inverted_index.brute-force | 19, 94, 231 |
| abstract_inverted_index.calculation | 173 |
| abstract_inverted_index.experiments | 240 |
| abstract_inverted_index.implemented | 119, 235 |
| abstract_inverted_index.investigate | 5 |
| abstract_inverted_index.sub-chains. | 211 |
| abstract_inverted_index.Experimental | 117 |
| abstract_inverted_index.applications | 146 |
| abstract_inverted_index.considerably | 224 |
| abstract_inverted_index.contribution | 86 |
| abstract_inverted_index.ground-truth | 252 |
| abstract_inverted_index.“Flavia” | 123 |
| abstract_inverted_index.computational | 149 |
| abstract_inverted_index.ground-truth, | 67 |
| abstract_inverted_index.ground-truth. | 267 |
| abstract_inverted_index.set-theoretic | 34 |
| abstract_inverted_index.supercomputer. | 237 |
| abstract_inverted_index.“Butterflies” | 121 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.44146568 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |