The Permuted Striped Block Model and its Factorization - Algorithms with Recovery Guarantees. Article Swipe
We introduce a novel class of matrices which are defined by the factorization $\textbf{Y} :=\textbf{A}\textbf{X}$, where $\textbf{A}$ is an $m \times n$ wide sparse binary matrix with a fixed number $d$ nonzeros per column and $\textbf{X}$ is an $n \times N$ sparse real matrix whose columns have at most $k$ nonzeros and are $\textit{dissociated}$. Matrices defined by this factorization can be expressed as a sum of $n$ rank one sparse matrices, whose nonzero entries, under the appropriate permutations, form striped blocks - we therefore refer to them as Permuted Striped Block (PSB) matrices. We define the $\textit{PSB data model}$ as a particular distribution over this class of matrices, motivated by its implications for community detection, provable binary dictionary learning with real valued sparse coding, and blind combinatorial compressed sensing. For data matrices drawn from the PSB data model, we provide computationally efficient factorization algorithms which recover the generating factors with high probability from as few as $N =O\left(\frac{n}{k}\log^2(n)\right)$ data vectors, where $k$, $m$ and $n$ scale proportionally. Notably, these algorithms achieve optimal sample complexity up to logarithmic factors.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://arxiv.org/abs/2004.05094
- OA Status
- green
- References
- 28
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3015701845
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3015701845Canonical identifier for this work in OpenAlex
- Title
-
The Permuted Striped Block Model and its Factorization - Algorithms with Recovery Guarantees.Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-10Full publication date if available
- Authors
-
Michael Murray, Jared TannerList of authors in order
- Landing page
-
https://arxiv.org/abs/2004.05094Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/abs/2004.05094Direct OA link when available
- Concepts
-
Factorization, Combinatorics, Logarithm, Binary number, Mathematics, Block (permutation group theory), Sparse matrix, Matrix (chemical analysis), Rank (graph theory), Class (philosophy), Block structure, Discrete mathematics, Algorithm, Computer science, Arithmetic, Physics, Mathematical analysis, Gaussian, Artificial intelligence, Materials science, Estimator, Quantum mechanics, Statistics, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3015701845 |
|---|---|
| doi | |
| ids.mag | 3015701845 |
| ids.openalex | https://openalex.org/W3015701845 |
| fwci | |
| type | preprint |
| title | The Permuted Striped Block Model and its Factorization - Algorithms with Recovery Guarantees. |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10500 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Sparse and Compressive Sensing Techniques |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T12879 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9951000213623047 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed Sensor Networks and Detection Algorithms |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C187834632 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8069339990615845 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q188804 |
| concepts[0].display_name | Factorization |
| concepts[1].id | https://openalex.org/C114614502 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6835240721702576 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[1].display_name | Combinatorics |
| concepts[2].id | https://openalex.org/C39927690 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6430388689041138 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11197 |
| concepts[2].display_name | Logarithm |
| concepts[3].id | https://openalex.org/C48372109 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5920038223266602 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[3].display_name | Binary number |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5217955112457275 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C2777210771 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5146368741989136 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4927124 |
| concepts[5].display_name | Block (permutation group theory) |
| concepts[6].id | https://openalex.org/C56372850 |
| concepts[6].level | 3 |
| concepts[6].score | 0.49262481927871704 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1050404 |
| concepts[6].display_name | Sparse matrix |
| concepts[7].id | https://openalex.org/C106487976 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4918225109577179 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[7].display_name | Matrix (chemical analysis) |
| concepts[8].id | https://openalex.org/C164226766 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48216503858566284 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[8].display_name | Rank (graph theory) |
| concepts[9].id | https://openalex.org/C2777212361 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4666476249694824 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[9].display_name | Class (philosophy) |
| concepts[10].id | https://openalex.org/C2983050975 |
| concepts[10].level | 3 |
| concepts[10].score | 0.43066850304603577 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q88287214 |
| concepts[10].display_name | Block structure |
| concepts[11].id | https://openalex.org/C118615104 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4210512340068817 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q121416 |
| concepts[11].display_name | Discrete mathematics |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.40627479553222656 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2508561611175537 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C94375191 |
| concepts[14].level | 1 |
| concepts[14].score | 0.15346750617027283 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[14].display_name | Arithmetic |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.11183860898017883 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C163716315 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[17].display_name | Gaussian |
| concepts[18].id | https://openalex.org/C154945302 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[18].display_name | Artificial intelligence |
| concepts[19].id | https://openalex.org/C192562407 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[19].display_name | Materials science |
| concepts[20].id | https://openalex.org/C185429906 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[20].display_name | Estimator |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| concepts[22].id | https://openalex.org/C105795698 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[22].display_name | Statistics |
| concepts[23].id | https://openalex.org/C159985019 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[23].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/factorization |
| keywords[0].score | 0.8069339990615845 |
| keywords[0].display_name | Factorization |
| keywords[1].id | https://openalex.org/keywords/combinatorics |
| keywords[1].score | 0.6835240721702576 |
| keywords[1].display_name | Combinatorics |
| keywords[2].id | https://openalex.org/keywords/logarithm |
| keywords[2].score | 0.6430388689041138 |
| keywords[2].display_name | Logarithm |
| keywords[3].id | https://openalex.org/keywords/binary-number |
| keywords[3].score | 0.5920038223266602 |
| keywords[3].display_name | Binary number |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.5217955112457275 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/block |
| keywords[5].score | 0.5146368741989136 |
| keywords[5].display_name | Block (permutation group theory) |
| keywords[6].id | https://openalex.org/keywords/sparse-matrix |
| keywords[6].score | 0.49262481927871704 |
| keywords[6].display_name | Sparse matrix |
| keywords[7].id | https://openalex.org/keywords/matrix |
| keywords[7].score | 0.4918225109577179 |
| keywords[7].display_name | Matrix (chemical analysis) |
| keywords[8].id | https://openalex.org/keywords/rank |
| keywords[8].score | 0.48216503858566284 |
| keywords[8].display_name | Rank (graph theory) |
| keywords[9].id | https://openalex.org/keywords/class |
| keywords[9].score | 0.4666476249694824 |
| keywords[9].display_name | Class (philosophy) |
| keywords[10].id | https://openalex.org/keywords/block-structure |
| keywords[10].score | 0.43066850304603577 |
| keywords[10].display_name | Block structure |
| keywords[11].id | https://openalex.org/keywords/discrete-mathematics |
| keywords[11].score | 0.4210512340068817 |
| keywords[11].display_name | Discrete mathematics |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.40627479553222656 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.2508561611175537 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/arithmetic |
| keywords[14].score | 0.15346750617027283 |
| keywords[14].display_name | Arithmetic |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.11183860898017883 |
| keywords[15].display_name | Physics |
| language | en |
| locations[0].id | mag:3015701845 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/abs/2004.05094 |
| authorships[0].author.id | https://openalex.org/A5101429451 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-5764-2362 |
| authorships[0].author.display_name | Michael Murray |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michael Murray |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059562923 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5561-9949 |
| authorships[1].author.display_name | Jared Tanner |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jared Tanner |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/abs/2004.05094 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Permuted Striped Block Model and its Factorization - Algorithms with Recovery Guarantees. |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10500 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Sparse and Compressive Sensing Techniques |
| related_works | https://openalex.org/W2085695830, https://openalex.org/W2041700769, https://openalex.org/W2311004089, https://openalex.org/W1150057154, https://openalex.org/W253708524, https://openalex.org/W2257351881, https://openalex.org/W2293771254, https://openalex.org/W2044756790, https://openalex.org/W2017431061, https://openalex.org/W2742637212, https://openalex.org/W2140798163, https://openalex.org/W2097085687, https://openalex.org/W2069849438, https://openalex.org/W2036446292, https://openalex.org/W2052848979, https://openalex.org/W2595503355, https://openalex.org/W3100626066, https://openalex.org/W67540999, https://openalex.org/W1603047746, https://openalex.org/W1982113212 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | mag:3015701845 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/abs/2004.05094 |
| primary_location.id | mag:3015701845 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/abs/2004.05094 |
| publication_date | 2020-04-10 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2611881023, https://openalex.org/W2950289646, https://openalex.org/W2143915663, https://openalex.org/W2963591837, https://openalex.org/W2552015277, https://openalex.org/W2255205876, https://openalex.org/W1979887353, https://openalex.org/W2296616510, https://openalex.org/W2293231900, https://openalex.org/W2331306493, https://openalex.org/W2601846890, https://openalex.org/W2957946950, https://openalex.org/W2148180254, https://openalex.org/W2140466267, https://openalex.org/W2559839022, https://openalex.org/W1993962865, https://openalex.org/W1766159063, https://openalex.org/W2145962650, https://openalex.org/W2005644627, https://openalex.org/W2130187411, https://openalex.org/W1620362451, https://openalex.org/W2152046843, https://openalex.org/W2295124130, https://openalex.org/W2402686099, https://openalex.org/W2963852453, https://openalex.org/W2053885701, https://openalex.org/W2784961280, https://openalex.org/W2532988047 |
| referenced_works_count | 28 |
| abstract_inverted_index.- | 81 |
| abstract_inverted_index.a | 2, 27, 63, 100 |
| abstract_inverted_index.$N | 156 |
| abstract_inverted_index.$m | 19 |
| abstract_inverted_index.$n | 38 |
| abstract_inverted_index.N$ | 40 |
| abstract_inverted_index.We | 0, 93 |
| abstract_inverted_index.an | 18, 37 |
| abstract_inverted_index.as | 62, 87, 99, 153, 155 |
| abstract_inverted_index.at | 47 |
| abstract_inverted_index.be | 60 |
| abstract_inverted_index.by | 10, 56, 109 |
| abstract_inverted_index.is | 17, 36 |
| abstract_inverted_index.n$ | 21 |
| abstract_inverted_index.of | 5, 65, 106 |
| abstract_inverted_index.to | 85, 175 |
| abstract_inverted_index.up | 174 |
| abstract_inverted_index.we | 82, 138 |
| abstract_inverted_index.$d$ | 30 |
| abstract_inverted_index.$k$ | 49 |
| abstract_inverted_index.$m$ | 162 |
| abstract_inverted_index.$n$ | 66, 164 |
| abstract_inverted_index.For | 129 |
| abstract_inverted_index.PSB | 135 |
| abstract_inverted_index.and | 34, 51, 124, 163 |
| abstract_inverted_index.are | 8, 52 |
| abstract_inverted_index.can | 59 |
| abstract_inverted_index.few | 154 |
| abstract_inverted_index.for | 112 |
| abstract_inverted_index.its | 110 |
| abstract_inverted_index.one | 68 |
| abstract_inverted_index.per | 32 |
| abstract_inverted_index.sum | 64 |
| abstract_inverted_index.the | 11, 75, 95, 134, 146 |
| abstract_inverted_index.$k$, | 161 |
| abstract_inverted_index.data | 97, 130, 136, 158 |
| abstract_inverted_index.form | 78 |
| abstract_inverted_index.from | 133, 152 |
| abstract_inverted_index.have | 46 |
| abstract_inverted_index.high | 150 |
| abstract_inverted_index.most | 48 |
| abstract_inverted_index.over | 103 |
| abstract_inverted_index.rank | 67 |
| abstract_inverted_index.real | 42, 120 |
| abstract_inverted_index.them | 86 |
| abstract_inverted_index.this | 57, 104 |
| abstract_inverted_index.wide | 22 |
| abstract_inverted_index.with | 26, 119, 149 |
| abstract_inverted_index.(PSB) | 91 |
| abstract_inverted_index.Block | 90 |
| abstract_inverted_index.blind | 125 |
| abstract_inverted_index.class | 4, 105 |
| abstract_inverted_index.drawn | 132 |
| abstract_inverted_index.fixed | 28 |
| abstract_inverted_index.novel | 3 |
| abstract_inverted_index.refer | 84 |
| abstract_inverted_index.scale | 165 |
| abstract_inverted_index.these | 168 |
| abstract_inverted_index.under | 74 |
| abstract_inverted_index.where | 15, 160 |
| abstract_inverted_index.which | 7, 144 |
| abstract_inverted_index.whose | 44, 71 |
| abstract_inverted_index.\times | 20, 39 |
| abstract_inverted_index.binary | 24, 116 |
| abstract_inverted_index.blocks | 80 |
| abstract_inverted_index.column | 33 |
| abstract_inverted_index.define | 94 |
| abstract_inverted_index.matrix | 25, 43 |
| abstract_inverted_index.model, | 137 |
| abstract_inverted_index.number | 29 |
| abstract_inverted_index.sample | 172 |
| abstract_inverted_index.sparse | 23, 41, 69, 122 |
| abstract_inverted_index.valued | 121 |
| abstract_inverted_index.Striped | 89 |
| abstract_inverted_index.achieve | 170 |
| abstract_inverted_index.coding, | 123 |
| abstract_inverted_index.columns | 45 |
| abstract_inverted_index.defined | 9, 55 |
| abstract_inverted_index.factors | 148 |
| abstract_inverted_index.model}$ | 98 |
| abstract_inverted_index.nonzero | 72 |
| abstract_inverted_index.optimal | 171 |
| abstract_inverted_index.provide | 139 |
| abstract_inverted_index.recover | 145 |
| abstract_inverted_index.striped | 79 |
| abstract_inverted_index.Matrices | 54 |
| abstract_inverted_index.Notably, | 167 |
| abstract_inverted_index.Permuted | 88 |
| abstract_inverted_index.entries, | 73 |
| abstract_inverted_index.factors. | 177 |
| abstract_inverted_index.learning | 118 |
| abstract_inverted_index.matrices | 6, 131 |
| abstract_inverted_index.nonzeros | 31, 50 |
| abstract_inverted_index.provable | 115 |
| abstract_inverted_index.sensing. | 128 |
| abstract_inverted_index.vectors, | 159 |
| abstract_inverted_index.community | 113 |
| abstract_inverted_index.efficient | 141 |
| abstract_inverted_index.expressed | 61 |
| abstract_inverted_index.introduce | 1 |
| abstract_inverted_index.matrices, | 70, 107 |
| abstract_inverted_index.matrices. | 92 |
| abstract_inverted_index.motivated | 108 |
| abstract_inverted_index.therefore | 83 |
| abstract_inverted_index.algorithms | 143, 169 |
| abstract_inverted_index.complexity | 173 |
| abstract_inverted_index.compressed | 127 |
| abstract_inverted_index.detection, | 114 |
| abstract_inverted_index.dictionary | 117 |
| abstract_inverted_index.generating | 147 |
| abstract_inverted_index.particular | 101 |
| abstract_inverted_index.$\textbf{Y} | 13 |
| abstract_inverted_index.appropriate | 76 |
| abstract_inverted_index.logarithmic | 176 |
| abstract_inverted_index.probability | 151 |
| abstract_inverted_index.$\textbf{A}$ | 16 |
| abstract_inverted_index.$\textbf{X}$ | 35 |
| abstract_inverted_index.$\textit{PSB | 96 |
| abstract_inverted_index.distribution | 102 |
| abstract_inverted_index.implications | 111 |
| abstract_inverted_index.combinatorial | 126 |
| abstract_inverted_index.factorization | 12, 58, 142 |
| abstract_inverted_index.permutations, | 77 |
| abstract_inverted_index.computationally | 140 |
| abstract_inverted_index.proportionally. | 166 |
| abstract_inverted_index.$\textit{dissociated}$. | 53 |
| abstract_inverted_index.:=\textbf{A}\textbf{X}$, | 14 |
| abstract_inverted_index.=O\left(\frac{n}{k}\log^2(n)\right)$ | 157 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |