The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs Article Swipe
Christopher Morris
,
Matthias Fey
,
Nils M. Kriege
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2021/618
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2021/618
In recent years, algorithms and neural architectures based on the Weisfeiler-Leman algorithm, a well-known heuristic for the graph isomorphism problem, emerged as a powerful tool for (supervised) machine learning with graphs and relational data. Here, we give a comprehensive overview of the algorithm's use in a machine learning setting. We discuss the theoretical background, show how to use it for supervised graph- and node classification, discuss recent extensions, and its connection to neural architectures. Moreover, we give an overview of current applications and future directions to stimulate research.
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2021/618
- https://www.ijcai.org/proceedings/2021/0618.pdf
- OA Status
- gold
- Cited By
- 3
- References
- 93
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3161822059
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3161822059Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2021/618Digital Object Identifier
- Title
-
The Power of the Weisfeiler-Leman Algorithm for Machine Learning with GraphsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-01Full publication date if available
- Authors
-
Christopher Morris, Matthias Fey, Nils M. KriegeList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2021/618Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2021/0618.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2021/0618.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Graph isomorphism, Heuristic, Graph, Artificial neural network, Algorithm, Theoretical computer science, Line graphTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
93Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3161822059 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2021/618 |
| ids.doi | https://doi.org/10.24963/ijcai.2021/618 |
| ids.mag | 3161822059 |
| ids.openalex | https://openalex.org/W3161822059 |
| fwci | 0.28220715 |
| type | preprint |
| title | The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 4550 |
| biblio.first_page | 4543 |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T12292 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Graph Theory and Algorithms |
| topics[2].id | https://openalex.org/T10064 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9817000031471252 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Complex Network Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.693916916847229 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5920473337173462 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5449889302253723 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C61665672 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5133556723594666 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q303100 |
| concepts[3].display_name | Graph isomorphism |
| concepts[4].id | https://openalex.org/C173801870 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4757387638092041 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q201413 |
| concepts[4].display_name | Heuristic |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4642411470413208 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4583510756492615 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.40264439582824707 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C80444323 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37175363302230835 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[8].display_name | Theoretical computer science |
| concepts[9].id | https://openalex.org/C203776342 |
| concepts[9].level | 3 |
| concepts[9].score | 0.07060307264328003 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1378376 |
| concepts[9].display_name | Line graph |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.693916916847229 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.5920473337173462 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5449889302253723 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/graph-isomorphism |
| keywords[3].score | 0.5133556723594666 |
| keywords[3].display_name | Graph isomorphism |
| keywords[4].id | https://openalex.org/keywords/heuristic |
| keywords[4].score | 0.4757387638092041 |
| keywords[4].display_name | Heuristic |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.4642411470413208 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.4583510756492615 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.40264439582824707 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[8].score | 0.37175363302230835 |
| keywords[8].display_name | Theoretical computer science |
| keywords[9].id | https://openalex.org/keywords/line-graph |
| keywords[9].score | 0.07060307264328003 |
| keywords[9].display_name | Line graph |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2021/618 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2021/0618.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2021/618 |
| locations[1].id | pmh:oai:publications.polymtl.ca:60597 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401013 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PolyPublie (École Polytechnique de Montréal) |
| locations[1].source.host_organization | https://openalex.org/I45683168 |
| locations[1].source.host_organization_name | Polytechnique Montréal |
| locations[1].source.host_organization_lineage | https://openalex.org/I45683168 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Communication de conférence |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:arXiv.org:2105.05911 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | https://arxiv.org/pdf/2105.05911 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://arxiv.org/abs/2105.05911 |
| locations[3].id | mag:3161822059 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | arXiv (Cornell University) |
| locations[3].landing_page_url | https://arxiv.org/pdf/2105.05911.pdf |
| locations[4].id | doi:10.48550/arxiv.2105.05911 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400194 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | arXiv (Cornell University) |
| locations[4].source.host_organization | https://openalex.org/I205783295 |
| locations[4].source.host_organization_name | Cornell University |
| locations[4].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | https://doi.org/10.48550/arxiv.2105.05911 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5025147185 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0465-1068 |
| authorships[0].author.display_name | Christopher Morris |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45683168 |
| authorships[0].affiliations[0].raw_affiliation_string | CERC in Data Science for Real-Time Decision-Making, Polytechnique Montréal |
| authorships[0].institutions[0].id | https://openalex.org/I45683168 |
| authorships[0].institutions[0].ror | https://ror.org/05f8d4e86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I45683168 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Polytechnique Montréal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Christopher Morris |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | CERC in Data Science for Real-Time Decision-Making, Polytechnique Montréal |
| authorships[1].author.id | https://openalex.org/A5002742256 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5727-0701 |
| authorships[1].author.display_name | Matthias Fey |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200332995 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, TU Dortmund University#TAB# |
| authorships[1].institutions[0].id | https://openalex.org/I200332995 |
| authorships[1].institutions[0].ror | https://ror.org/01k97gp34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200332995 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | TU Dortmund University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Matthias Fey |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, TU Dortmund University#TAB# |
| authorships[2].author.id | https://openalex.org/A5009569829 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2645-947X |
| authorships[2].author.display_name | Nils M. Kriege |
| authorships[2].countries | AT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129774422 |
| authorships[2].affiliations[0].raw_affiliation_string | Univ of Vienna |
| authorships[2].institutions[0].id | https://openalex.org/I129774422 |
| authorships[2].institutions[0].ror | https://ror.org/03prydq77 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129774422 |
| authorships[2].institutions[0].country_code | AT |
| authorships[2].institutions[0].display_name | University of Vienna |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Nils M. Kriege |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Univ of Vienna |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2021/0618.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Power of the Weisfeiler-Leman Algorithm for Machine Learning with Graphs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W3191668483, https://openalex.org/W3162323195, https://openalex.org/W3177995633, https://openalex.org/W3159040448, https://openalex.org/W3187249216, https://openalex.org/W3199048887, https://openalex.org/W3195406508, https://openalex.org/W3095609162, https://openalex.org/W3093489363, https://openalex.org/W3127802357, https://openalex.org/W2998604091, https://openalex.org/W3198168376, https://openalex.org/W3194856818, https://openalex.org/W3197011898, https://openalex.org/W3183947357, https://openalex.org/W3133587129, https://openalex.org/W3153616555, https://openalex.org/W2905224888, https://openalex.org/W3203778296, https://openalex.org/W3158196591 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.24963/ijcai.2021/618 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2021/0618.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2021/618 |
| primary_location.id | doi:10.24963/ijcai.2021/618 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2021/0618.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2021/618 |
| publication_date | 2021-08-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2788919350, https://openalex.org/W2964113829, https://openalex.org/W2963867952, https://openalex.org/W2280799770, https://openalex.org/W3005187920, https://openalex.org/W3007309629, https://openalex.org/W2970823238, https://openalex.org/W3158952485, https://openalex.org/W3038035290, https://openalex.org/W2493322072, https://openalex.org/W2962810718, https://openalex.org/W2963879148, https://openalex.org/W2142498761, https://openalex.org/W2163480486, https://openalex.org/W3005043394, https://openalex.org/W3036016037, https://openalex.org/W2786016794, https://openalex.org/W2051748083, https://openalex.org/W2946721323, https://openalex.org/W2296150830, https://openalex.org/W2181072414, https://openalex.org/W3129794609, https://openalex.org/W19838944, https://openalex.org/W2190928263, https://openalex.org/W2962911247, https://openalex.org/W2092914419, https://openalex.org/W2996443485, https://openalex.org/W2606202972, https://openalex.org/W2963063614, https://openalex.org/W3103720336, https://openalex.org/W2952148714, https://openalex.org/W2604795503, https://openalex.org/W2963693932, https://openalex.org/W2606780347, https://openalex.org/W2607264901, https://openalex.org/W2790230823, https://openalex.org/W2624431344, https://openalex.org/W2558460151, https://openalex.org/W3022208364, https://openalex.org/W1809739516, https://openalex.org/W2287453393, https://openalex.org/W2811124557, https://openalex.org/W3100848837, https://openalex.org/W3034339187, https://openalex.org/W2962711740, https://openalex.org/W2140119009, https://openalex.org/W2964195552, https://openalex.org/W3034638521, https://openalex.org/W3131262006, https://openalex.org/W2970731410, https://openalex.org/W2963464736, https://openalex.org/W2945568301, https://openalex.org/W2963840360, https://openalex.org/W3021120679, https://openalex.org/W2771949901, https://openalex.org/W2945070494, https://openalex.org/W2964108670, https://openalex.org/W3110901318, https://openalex.org/W2963463723, https://openalex.org/W3041877813, https://openalex.org/W2995329413, https://openalex.org/W2994695355, https://openalex.org/W2972515860, https://openalex.org/W2962767366, https://openalex.org/W3042770487, https://openalex.org/W2604314403, https://openalex.org/W2807994977, https://openalex.org/W2918342466, https://openalex.org/W2806115886, https://openalex.org/W3042313988, https://openalex.org/W168459216, https://openalex.org/W3005941526, https://openalex.org/W2925177113, https://openalex.org/W2219485415, https://openalex.org/W2768308213, https://openalex.org/W2963309796, https://openalex.org/W2964077962, https://openalex.org/W2806351858, https://openalex.org/W3035664258, https://openalex.org/W2742503211, https://openalex.org/W2560609797, https://openalex.org/W2111302825, https://openalex.org/W2590960023, https://openalex.org/W2293163859, https://openalex.org/W2803836358, https://openalex.org/W3090285371, https://openalex.org/W2152691118, https://openalex.org/W2942259124, https://openalex.org/W3102154670, https://openalex.org/W2970709315, https://openalex.org/W2953054275, https://openalex.org/W3037697850, https://openalex.org/W2891396148 |
| referenced_works_count | 93 |
| abstract_inverted_index.a | 12, 22, 37, 45 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.We | 49 |
| abstract_inverted_index.an | 77 |
| abstract_inverted_index.as | 21 |
| abstract_inverted_index.in | 44 |
| abstract_inverted_index.it | 58 |
| abstract_inverted_index.of | 40, 79 |
| abstract_inverted_index.on | 8 |
| abstract_inverted_index.to | 56, 71, 85 |
| abstract_inverted_index.we | 35, 75 |
| abstract_inverted_index.and | 4, 31, 62, 68, 82 |
| abstract_inverted_index.for | 15, 25, 59 |
| abstract_inverted_index.how | 55 |
| abstract_inverted_index.its | 69 |
| abstract_inverted_index.the | 9, 16, 41, 51 |
| abstract_inverted_index.use | 43, 57 |
| abstract_inverted_index.give | 36, 76 |
| abstract_inverted_index.node | 63 |
| abstract_inverted_index.show | 54 |
| abstract_inverted_index.tool | 24 |
| abstract_inverted_index.with | 29 |
| abstract_inverted_index.Here, | 34 |
| abstract_inverted_index.based | 7 |
| abstract_inverted_index.data. | 33 |
| abstract_inverted_index.graph | 17 |
| abstract_inverted_index.future | 83 |
| abstract_inverted_index.graph- | 61 |
| abstract_inverted_index.graphs | 30 |
| abstract_inverted_index.neural | 5, 72 |
| abstract_inverted_index.recent | 1, 66 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.current | 80 |
| abstract_inverted_index.discuss | 50, 65 |
| abstract_inverted_index.emerged | 20 |
| abstract_inverted_index.machine | 27, 46 |
| abstract_inverted_index.learning | 28, 47 |
| abstract_inverted_index.overview | 39, 78 |
| abstract_inverted_index.powerful | 23 |
| abstract_inverted_index.problem, | 19 |
| abstract_inverted_index.setting. | 48 |
| abstract_inverted_index.Moreover, | 74 |
| abstract_inverted_index.heuristic | 14 |
| abstract_inverted_index.research. | 87 |
| abstract_inverted_index.stimulate | 86 |
| abstract_inverted_index.algorithm, | 11 |
| abstract_inverted_index.algorithms | 3 |
| abstract_inverted_index.connection | 70 |
| abstract_inverted_index.directions | 84 |
| abstract_inverted_index.relational | 32 |
| abstract_inverted_index.supervised | 60 |
| abstract_inverted_index.well-known | 13 |
| abstract_inverted_index.algorithm's | 42 |
| abstract_inverted_index.background, | 53 |
| abstract_inverted_index.extensions, | 67 |
| abstract_inverted_index.isomorphism | 18 |
| abstract_inverted_index.theoretical | 52 |
| abstract_inverted_index.(supervised) | 26 |
| abstract_inverted_index.applications | 81 |
| abstract_inverted_index.architectures | 6 |
| abstract_inverted_index.comprehensive | 38 |
| abstract_inverted_index.architectures. | 73 |
| abstract_inverted_index.classification, | 64 |
| abstract_inverted_index.Weisfeiler-Leman | 10 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.62317031 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |