The prime number theorem over integers of power-free polynomial values Article Swipe
Biao Wang
,
Shaoyun Yi
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.00804
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.00804
Let $f(x)\in \mathbb{Z}[x]$ be an irreducible polynomial of degree $d\ge 1$. Let $k\ge2$ be an integer. The number of integers $n$ such that $f(n)$ is $k$-free is widely studied in the literature. In principle, one expects that $f(n)$ is $k$-free infinitely often, if $f$ has no fixed $k$-th power divisor. In 2022, Bergelson and Richter established a new dynamical generalization of the prime number theorem (PNT). Inspired by their work, one may expect that this generalization of the PNT also holds over integers of power-free polynomial values. In this note, we establish such variant of Bergelson and Richter's theorem for several polynomials studied by Estermann, Hooley, Heath-Brown, Booker and Browning.
Related Topics
Concepts
No concepts available.
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.00804
- https://arxiv.org/pdf/2504.00804
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417228788
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417228788Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.00804Digital Object Identifier
- Title
-
The prime number theorem over integers of power-free polynomial valuesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-01Full publication date if available
- Authors
-
Biao Wang, Shaoyun YiList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.00804Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.00804Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.00804Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417228788 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.00804 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.00804 |
| ids.openalex | https://openalex.org/W4417228788 |
| fwci | |
| type | preprint |
| title | The prime number theorem over integers of power-free polynomial values |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.00804 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.00804 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.00804 |
| locations[1].id | doi:10.48550/arxiv.2504.00804 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.00804 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100439502 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1089-1049 |
| authorships[0].author.display_name | Biao Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Biao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009467467 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1251-8611 |
| authorships[1].author.display_name | Shaoyun Yi |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Yi, Shaoyun |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.00804 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The prime number theorem over integers of power-free polynomial values |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-11T12:03:53.167153 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.00804 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.00804 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.00804 |
| primary_location.id | pmh:oai:arXiv.org:2504.00804 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.00804 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.00804 |
| publication_date | 2025-04-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 56 |
| abstract_inverted_index.In | 32, 50, 87 |
| abstract_inverted_index.an | 4, 14 |
| abstract_inverted_index.be | 3, 13 |
| abstract_inverted_index.by | 67, 103 |
| abstract_inverted_index.if | 42 |
| abstract_inverted_index.in | 29 |
| abstract_inverted_index.is | 24, 26, 38 |
| abstract_inverted_index.no | 45 |
| abstract_inverted_index.of | 7, 18, 60, 76, 83, 94 |
| abstract_inverted_index.we | 90 |
| abstract_inverted_index.$f$ | 43 |
| abstract_inverted_index.$n$ | 20 |
| abstract_inverted_index.1$. | 10 |
| abstract_inverted_index.Let | 0, 11 |
| abstract_inverted_index.PNT | 78 |
| abstract_inverted_index.The | 16 |
| abstract_inverted_index.and | 53, 96, 108 |
| abstract_inverted_index.for | 99 |
| abstract_inverted_index.has | 44 |
| abstract_inverted_index.may | 71 |
| abstract_inverted_index.new | 57 |
| abstract_inverted_index.one | 34, 70 |
| abstract_inverted_index.the | 30, 61, 77 |
| abstract_inverted_index.also | 79 |
| abstract_inverted_index.over | 81 |
| abstract_inverted_index.such | 21, 92 |
| abstract_inverted_index.that | 22, 36, 73 |
| abstract_inverted_index.this | 74, 88 |
| abstract_inverted_index.$d\ge | 9 |
| abstract_inverted_index.2022, | 51 |
| abstract_inverted_index.fixed | 46 |
| abstract_inverted_index.holds | 80 |
| abstract_inverted_index.note, | 89 |
| abstract_inverted_index.power | 48 |
| abstract_inverted_index.prime | 62 |
| abstract_inverted_index.their | 68 |
| abstract_inverted_index.work, | 69 |
| abstract_inverted_index.$f(n)$ | 23, 37 |
| abstract_inverted_index.$k$-th | 47 |
| abstract_inverted_index.(PNT). | 65 |
| abstract_inverted_index.Booker | 107 |
| abstract_inverted_index.degree | 8 |
| abstract_inverted_index.expect | 72 |
| abstract_inverted_index.number | 17, 63 |
| abstract_inverted_index.often, | 41 |
| abstract_inverted_index.widely | 27 |
| abstract_inverted_index.$k\ge2$ | 12 |
| abstract_inverted_index.Hooley, | 105 |
| abstract_inverted_index.Richter | 54 |
| abstract_inverted_index.expects | 35 |
| abstract_inverted_index.several | 100 |
| abstract_inverted_index.studied | 28, 102 |
| abstract_inverted_index.theorem | 64, 98 |
| abstract_inverted_index.values. | 86 |
| abstract_inverted_index.variant | 93 |
| abstract_inverted_index.$f(x)\in | 1 |
| abstract_inverted_index.$k$-free | 25, 39 |
| abstract_inverted_index.Inspired | 66 |
| abstract_inverted_index.divisor. | 49 |
| abstract_inverted_index.integer. | 15 |
| abstract_inverted_index.integers | 19, 82 |
| abstract_inverted_index.Bergelson | 52, 95 |
| abstract_inverted_index.Browning. | 109 |
| abstract_inverted_index.Richter's | 97 |
| abstract_inverted_index.dynamical | 58 |
| abstract_inverted_index.establish | 91 |
| abstract_inverted_index.Estermann, | 104 |
| abstract_inverted_index.infinitely | 40 |
| abstract_inverted_index.polynomial | 6, 85 |
| abstract_inverted_index.power-free | 84 |
| abstract_inverted_index.principle, | 33 |
| abstract_inverted_index.established | 55 |
| abstract_inverted_index.irreducible | 5 |
| abstract_inverted_index.literature. | 31 |
| abstract_inverted_index.polynomials | 101 |
| abstract_inverted_index.Heath-Brown, | 106 |
| abstract_inverted_index.\mathbb{Z}[x]$ | 2 |
| abstract_inverted_index.generalization | 59, 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |