The regularization theory of the Krylov iterative solvers LSQR and CGLS for linear discrete ill-posed problems, part I: the simple singular value case Article Swipe
For the large-scale linear discrete ill-posed problem $\min\|Ax-b\|$ or $Ax=b$ with $b$ contaminated by a white noise, the Lanczos bidiagonalization based LSQR method and its mathematically equivalent Conjugate Gradient (CG) method for $A^TAx=A^Tb$ are most commonly used. They have intrinsic regularizing effects, where the number $k$ of iterations plays the role of regularization parameter. However, there has been no answer to the long-standing fundamental concern by Björck and Eldén in 1979: for which kinds of problems LSQR and CGLS can find best possible regularized solutions? Here a best possible regularized solution means that it is at least as accurate as the best regularized solution obtained by the truncated singular value decomposition (TSVD) method or standard-form Tikhonov regularization. In this paper, assuming that the singular values of $A$ are simple, we analyze the regularization of LSQR for severely, moderately and mildly ill-posed problems. We establish accurate estimates for the 2-norm distance between the underlying $k$-dimensional Krylov subspace and the $k$-dimensional dominant right singular subspace of $A$. For the first two kinds of problems, we then prove that LSQR finds a best possible regularized solution at semi-convergence occurring at iteration $k_0$ and that, for $k=1,2,\ldots,k_0$, (i) the $k$-step Lanczos bidiagonalization always generates a near best rank $k$ approximation to $A$; (ii) the $k$ Ritz values always approximate the first $k$ large singular values in natural order; (iii) the $k$-step LSQR always captures the $k$ dominant SVD components of $A$. For the third kind of problem, we prove that LSQR generally cannot find a best possible regularized solution. Numerical experiments confirm our theory.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1701.05708
- https://arxiv.org/pdf/1701.05708
- OA Status
- green
- Cited By
- 2
- References
- 76
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2579891415
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2579891415Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1701.05708Digital Object Identifier
- Title
-
The regularization theory of the Krylov iterative solvers LSQR and CGLS for linear discrete ill-posed problems, part I: the simple singular value caseWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-20Full publication date if available
- Authors
-
Zhongxiao JiaList of authors in order
- Landing page
-
https://arxiv.org/abs/1701.05708Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1701.05708Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1701.05708Direct OA link when available
- Concepts
-
Mathematics, Lanczos resampling, Tikhonov regularization, Krylov subspace, Regularization (linguistics), Singular value, Singular value decomposition, Applied mathematics, Conjugate gradient method, Well-posed problem, Mathematical analysis, Inverse problem, Linear system, Mathematical optimization, Algorithm, Eigenvalues and eigenvectors, Computer science, Physics, Artificial intelligence, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 1, 2018: 1Per-year citation counts (last 5 years)
- References (count)
-
76Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2579891415 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1701.05708 |
| ids.doi | https://doi.org/10.48550/arxiv.1701.05708 |
| ids.mag | 2579891415 |
| ids.openalex | https://openalex.org/W2579891415 |
| fwci | |
| type | preprint |
| title | The regularization theory of the Krylov iterative solvers LSQR and CGLS for linear discrete ill-posed problems, part I: the simple singular value case |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11205 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2610 |
| topics[0].subfield.display_name | Mathematical Physics |
| topics[0].display_name | Numerical methods in inverse problems |
| topics[1].id | https://openalex.org/T13487 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Statistical and numerical algorithms |
| topics[2].id | https://openalex.org/T11739 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9927999973297119 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Microwave Imaging and Scattering Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8301820755004883 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C119256216 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8267835378646851 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q913012 |
| concepts[1].display_name | Lanczos resampling |
| concepts[2].id | https://openalex.org/C152442038 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7828627228736877 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2778212 |
| concepts[2].display_name | Tikhonov regularization |
| concepts[3].id | https://openalex.org/C147060835 |
| concepts[3].level | 3 |
| concepts[3].score | 0.658635139465332 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1757151 |
| concepts[3].display_name | Krylov subspace |
| concepts[4].id | https://openalex.org/C2776135515 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6284383535385132 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17143721 |
| concepts[4].display_name | Regularization (linguistics) |
| concepts[5].id | https://openalex.org/C109282560 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6028392910957336 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4166054 |
| concepts[5].display_name | Singular value |
| concepts[6].id | https://openalex.org/C22789450 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5836233496665955 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420904 |
| concepts[6].display_name | Singular value decomposition |
| concepts[7].id | https://openalex.org/C28826006 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5647537708282471 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[7].display_name | Applied mathematics |
| concepts[8].id | https://openalex.org/C81184566 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5526073575019836 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1191895 |
| concepts[8].display_name | Conjugate gradient method |
| concepts[9].id | https://openalex.org/C106214006 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5150182247161865 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1455898 |
| concepts[9].display_name | Well-posed problem |
| concepts[10].id | https://openalex.org/C134306372 |
| concepts[10].level | 1 |
| concepts[10].score | 0.31973880529403687 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[10].display_name | Mathematical analysis |
| concepts[11].id | https://openalex.org/C135252773 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2655380964279175 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1567213 |
| concepts[11].display_name | Inverse problem |
| concepts[12].id | https://openalex.org/C6802819 |
| concepts[12].level | 2 |
| concepts[12].score | 0.24870005249977112 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1072174 |
| concepts[12].display_name | Linear system |
| concepts[13].id | https://openalex.org/C126255220 |
| concepts[13].level | 1 |
| concepts[13].score | 0.23287290334701538 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[13].display_name | Mathematical optimization |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.19418910145759583 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C158693339 |
| concepts[15].level | 2 |
| concepts[15].score | 0.12145769596099854 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[15].display_name | Eigenvalues and eigenvectors |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.07195904850959778 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C154945302 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[18].display_name | Artificial intelligence |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.8301820755004883 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/lanczos-resampling |
| keywords[1].score | 0.8267835378646851 |
| keywords[1].display_name | Lanczos resampling |
| keywords[2].id | https://openalex.org/keywords/tikhonov-regularization |
| keywords[2].score | 0.7828627228736877 |
| keywords[2].display_name | Tikhonov regularization |
| keywords[3].id | https://openalex.org/keywords/krylov-subspace |
| keywords[3].score | 0.658635139465332 |
| keywords[3].display_name | Krylov subspace |
| keywords[4].id | https://openalex.org/keywords/regularization |
| keywords[4].score | 0.6284383535385132 |
| keywords[4].display_name | Regularization (linguistics) |
| keywords[5].id | https://openalex.org/keywords/singular-value |
| keywords[5].score | 0.6028392910957336 |
| keywords[5].display_name | Singular value |
| keywords[6].id | https://openalex.org/keywords/singular-value-decomposition |
| keywords[6].score | 0.5836233496665955 |
| keywords[6].display_name | Singular value decomposition |
| keywords[7].id | https://openalex.org/keywords/applied-mathematics |
| keywords[7].score | 0.5647537708282471 |
| keywords[7].display_name | Applied mathematics |
| keywords[8].id | https://openalex.org/keywords/conjugate-gradient-method |
| keywords[8].score | 0.5526073575019836 |
| keywords[8].display_name | Conjugate gradient method |
| keywords[9].id | https://openalex.org/keywords/well-posed-problem |
| keywords[9].score | 0.5150182247161865 |
| keywords[9].display_name | Well-posed problem |
| keywords[10].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[10].score | 0.31973880529403687 |
| keywords[10].display_name | Mathematical analysis |
| keywords[11].id | https://openalex.org/keywords/inverse-problem |
| keywords[11].score | 0.2655380964279175 |
| keywords[11].display_name | Inverse problem |
| keywords[12].id | https://openalex.org/keywords/linear-system |
| keywords[12].score | 0.24870005249977112 |
| keywords[12].display_name | Linear system |
| keywords[13].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[13].score | 0.23287290334701538 |
| keywords[13].display_name | Mathematical optimization |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.19418910145759583 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[15].score | 0.12145769596099854 |
| keywords[15].display_name | Eigenvalues and eigenvectors |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.07195904850959778 |
| keywords[16].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1701.05708 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1701.05708 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1701.05708 |
| locations[1].id | doi:10.48550/arxiv.1701.05708 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1701.05708 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5075378610 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9761-8517 |
| authorships[0].author.display_name | Zhongxiao Jia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhongxiao Jia |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1701.05708 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The regularization theory of the Krylov iterative solvers LSQR and CGLS for linear discrete ill-posed problems, part I: the simple singular value case |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11205 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2610 |
| primary_topic.subfield.display_name | Mathematical Physics |
| primary_topic.display_name | Numerical methods in inverse problems |
| related_works | https://openalex.org/W2950418232, https://openalex.org/W4301683480, https://openalex.org/W2889932903, https://openalex.org/W1987723384, https://openalex.org/W1964004266, https://openalex.org/W3201061354, https://openalex.org/W2512523917, https://openalex.org/W4242776319, https://openalex.org/W1977732568, https://openalex.org/W2045998430 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2018 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1701.05708 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1701.05708 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1701.05708 |
| primary_location.id | pmh:oai:arXiv.org:1701.05708 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1701.05708 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1701.05708 |
| publication_date | 2017-01-20 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2065931256, https://openalex.org/W1983886273, https://openalex.org/W2043394915, https://openalex.org/W2073835183, https://openalex.org/W2212050418, https://openalex.org/W2013477725, https://openalex.org/W2585913037, https://openalex.org/W2095508103, https://openalex.org/W2013321956, https://openalex.org/W2106084033, https://openalex.org/W637574335, https://openalex.org/W2075665712, https://openalex.org/W2010315317, https://openalex.org/W2066034539, https://openalex.org/W2137645797, https://openalex.org/W1522512418, https://openalex.org/W2050001231, https://openalex.org/W2033242948, https://openalex.org/W2042607762, https://openalex.org/W2611081798, https://openalex.org/W1998762105, https://openalex.org/W2086784326, https://openalex.org/W2123944402, https://openalex.org/W2067461769, https://openalex.org/W2133560833, https://openalex.org/W2313084557, https://openalex.org/W1992317813, https://openalex.org/W1573376668, https://openalex.org/W1980461259, https://openalex.org/W26205945, https://openalex.org/W1971569240, https://openalex.org/W1990381576, https://openalex.org/W2085314413, https://openalex.org/W613352991, https://openalex.org/W1931725016, https://openalex.org/W354722939, https://openalex.org/W1968735445, https://openalex.org/W2035106447, https://openalex.org/W2005140191, https://openalex.org/W1542258000, https://openalex.org/W625895441, https://openalex.org/W1596181878, https://openalex.org/W64572908, https://openalex.org/W2149846618, https://openalex.org/W2964223338, https://openalex.org/W1977361006, https://openalex.org/W1561017135, https://openalex.org/W1986721151, https://openalex.org/W1491683340, https://openalex.org/W2031604650, https://openalex.org/W1741578612, https://openalex.org/W1969938703, https://openalex.org/W2059586807, https://openalex.org/W1975650588, https://openalex.org/W1570089119, https://openalex.org/W2069740856, https://openalex.org/W2098038291, https://openalex.org/W2009511046, https://openalex.org/W2282649489, https://openalex.org/W2040623864, https://openalex.org/W2095376540, https://openalex.org/W2316564661, https://openalex.org/W2058784008, https://openalex.org/W2024368976, https://openalex.org/W2061813658, https://openalex.org/W2114424556, https://openalex.org/W1983968300, https://openalex.org/W1965497533, https://openalex.org/W2117686912, https://openalex.org/W2019787708, https://openalex.org/W145616578, https://openalex.org/W1531455566, https://openalex.org/W2104489368, https://openalex.org/W1964910311, https://openalex.org/W2097897435, https://openalex.org/W2140064412 |
| referenced_works_count | 76 |
| abstract_inverted_index.a | 14, 86, 178, 200, 250 |
| abstract_inverted_index.In | 117 |
| abstract_inverted_index.We | 142 |
| abstract_inverted_index.as | 97, 99 |
| abstract_inverted_index.at | 95, 183, 186 |
| abstract_inverted_index.by | 13, 65, 105 |
| abstract_inverted_index.in | 69, 221 |
| abstract_inverted_index.is | 94 |
| abstract_inverted_index.it | 93 |
| abstract_inverted_index.no | 58 |
| abstract_inverted_index.of | 46, 51, 74, 125, 133, 163, 170, 235, 241 |
| abstract_inverted_index.or | 8, 113 |
| abstract_inverted_index.to | 60, 206 |
| abstract_inverted_index.we | 129, 172, 243 |
| abstract_inverted_index.$A$ | 126 |
| abstract_inverted_index.$b$ | 11 |
| abstract_inverted_index.$k$ | 45, 204, 210, 217, 231 |
| abstract_inverted_index.(i) | 193 |
| abstract_inverted_index.For | 0, 165, 237 |
| abstract_inverted_index.SVD | 233 |
| abstract_inverted_index.and | 23, 67, 77, 138, 156, 189 |
| abstract_inverted_index.are | 33, 127 |
| abstract_inverted_index.can | 79 |
| abstract_inverted_index.for | 31, 71, 135, 146, 191 |
| abstract_inverted_index.has | 56 |
| abstract_inverted_index.its | 24 |
| abstract_inverted_index.our | 258 |
| abstract_inverted_index.the | 1, 17, 43, 49, 61, 100, 106, 122, 131, 147, 151, 157, 166, 194, 209, 215, 225, 230, 238 |
| abstract_inverted_index.two | 168 |
| abstract_inverted_index.$A$. | 164, 236 |
| abstract_inverted_index.$A$; | 207 |
| abstract_inverted_index.(CG) | 29 |
| abstract_inverted_index.(ii) | 208 |
| abstract_inverted_index.CGLS | 78 |
| abstract_inverted_index.Here | 85 |
| abstract_inverted_index.LSQR | 21, 76, 134, 176, 227, 246 |
| abstract_inverted_index.Ritz | 211 |
| abstract_inverted_index.They | 37 |
| abstract_inverted_index.been | 57 |
| abstract_inverted_index.best | 81, 87, 101, 179, 202, 251 |
| abstract_inverted_index.find | 80, 249 |
| abstract_inverted_index.have | 38 |
| abstract_inverted_index.kind | 240 |
| abstract_inverted_index.most | 34 |
| abstract_inverted_index.near | 201 |
| abstract_inverted_index.rank | 203 |
| abstract_inverted_index.role | 50 |
| abstract_inverted_index.that | 92, 121, 175, 245 |
| abstract_inverted_index.then | 173 |
| abstract_inverted_index.this | 118 |
| abstract_inverted_index.with | 10 |
| abstract_inverted_index.$k_0$ | 188 |
| abstract_inverted_index.(iii) | 224 |
| abstract_inverted_index.1979: | 70 |
| abstract_inverted_index.based | 20 |
| abstract_inverted_index.finds | 177 |
| abstract_inverted_index.first | 167, 216 |
| abstract_inverted_index.kinds | 73, 169 |
| abstract_inverted_index.large | 218 |
| abstract_inverted_index.least | 96 |
| abstract_inverted_index.means | 91 |
| abstract_inverted_index.plays | 48 |
| abstract_inverted_index.prove | 174, 244 |
| abstract_inverted_index.right | 160 |
| abstract_inverted_index.that, | 190 |
| abstract_inverted_index.there | 55 |
| abstract_inverted_index.third | 239 |
| abstract_inverted_index.used. | 36 |
| abstract_inverted_index.value | 109 |
| abstract_inverted_index.where | 42 |
| abstract_inverted_index.which | 72 |
| abstract_inverted_index.white | 15 |
| abstract_inverted_index.$Ax=b$ | 9 |
| abstract_inverted_index.(TSVD) | 111 |
| abstract_inverted_index.2-norm | 148 |
| abstract_inverted_index.Eldén | 68 |
| abstract_inverted_index.Krylov | 154 |
| abstract_inverted_index.always | 198, 213, 228 |
| abstract_inverted_index.answer | 59 |
| abstract_inverted_index.cannot | 248 |
| abstract_inverted_index.linear | 3 |
| abstract_inverted_index.method | 22, 30, 112 |
| abstract_inverted_index.mildly | 139 |
| abstract_inverted_index.noise, | 16 |
| abstract_inverted_index.number | 44 |
| abstract_inverted_index.order; | 223 |
| abstract_inverted_index.paper, | 119 |
| abstract_inverted_index.values | 124, 212, 220 |
| abstract_inverted_index.Björck | 66 |
| abstract_inverted_index.Lanczos | 18, 196 |
| abstract_inverted_index.analyze | 130 |
| abstract_inverted_index.between | 150 |
| abstract_inverted_index.concern | 64 |
| abstract_inverted_index.confirm | 257 |
| abstract_inverted_index.natural | 222 |
| abstract_inverted_index.problem | 6 |
| abstract_inverted_index.simple, | 128 |
| abstract_inverted_index.theory. | 259 |
| abstract_inverted_index.$k$-step | 195, 226 |
| abstract_inverted_index.Gradient | 28 |
| abstract_inverted_index.However, | 54 |
| abstract_inverted_index.Tikhonov | 115 |
| abstract_inverted_index.accurate | 98, 144 |
| abstract_inverted_index.assuming | 120 |
| abstract_inverted_index.captures | 229 |
| abstract_inverted_index.commonly | 35 |
| abstract_inverted_index.discrete | 4 |
| abstract_inverted_index.distance | 149 |
| abstract_inverted_index.dominant | 159, 232 |
| abstract_inverted_index.effects, | 41 |
| abstract_inverted_index.obtained | 104 |
| abstract_inverted_index.possible | 82, 88, 180, 252 |
| abstract_inverted_index.problem, | 242 |
| abstract_inverted_index.problems | 75 |
| abstract_inverted_index.singular | 108, 123, 161, 219 |
| abstract_inverted_index.solution | 90, 103, 182 |
| abstract_inverted_index.subspace | 155, 162 |
| abstract_inverted_index.Conjugate | 27 |
| abstract_inverted_index.Numerical | 255 |
| abstract_inverted_index.establish | 143 |
| abstract_inverted_index.estimates | 145 |
| abstract_inverted_index.generally | 247 |
| abstract_inverted_index.generates | 199 |
| abstract_inverted_index.ill-posed | 5, 140 |
| abstract_inverted_index.intrinsic | 39 |
| abstract_inverted_index.iteration | 187 |
| abstract_inverted_index.occurring | 185 |
| abstract_inverted_index.problems, | 171 |
| abstract_inverted_index.problems. | 141 |
| abstract_inverted_index.severely, | 136 |
| abstract_inverted_index.solution. | 254 |
| abstract_inverted_index.truncated | 107 |
| abstract_inverted_index.components | 234 |
| abstract_inverted_index.equivalent | 26 |
| abstract_inverted_index.iterations | 47 |
| abstract_inverted_index.moderately | 137 |
| abstract_inverted_index.parameter. | 53 |
| abstract_inverted_index.solutions? | 84 |
| abstract_inverted_index.underlying | 152 |
| abstract_inverted_index.approximate | 214 |
| abstract_inverted_index.experiments | 256 |
| abstract_inverted_index.fundamental | 63 |
| abstract_inverted_index.large-scale | 2 |
| abstract_inverted_index.regularized | 83, 89, 102, 181, 253 |
| abstract_inverted_index.$A^TAx=A^Tb$ | 32 |
| abstract_inverted_index.contaminated | 12 |
| abstract_inverted_index.regularizing | 40 |
| abstract_inverted_index.approximation | 205 |
| abstract_inverted_index.decomposition | 110 |
| abstract_inverted_index.long-standing | 62 |
| abstract_inverted_index.standard-form | 114 |
| abstract_inverted_index.$\min\|Ax-b\|$ | 7 |
| abstract_inverted_index.mathematically | 25 |
| abstract_inverted_index.regularization | 52, 132 |
| abstract_inverted_index.$k$-dimensional | 153, 158 |
| abstract_inverted_index.regularization. | 116 |
| abstract_inverted_index.semi-convergence | 184 |
| abstract_inverted_index.bidiagonalization | 19, 197 |
| abstract_inverted_index.$k=1,2,\ldots,k_0$, | 192 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5075378610 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |