THE SUITABILITY OF TERRESTRIAL LASER SCANNING FOR BUILDING SURVEY AND MAPPING APPLICATIONS Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019
The popularity of Terrestrial Laser Scanner (TLS) has been introduced into a field of surveying and has increased dramatically especially in producing the 3D model of the building. The used of terrestrial laser scanning (TLS) is becoming rapidly popular because of its ability in several applications, especially the ability to observe complex documentation of complex building and observe millions of point cloud in three-dimensional in a short period. Users of building plan usually find it difficult to translate the traditional two-dimensional (2D) data on maps they see on a flat piece of paper to three-dimensional (3D). The TLS is able to record thousands of point clouds which contains very rich of geometry details and made the processing usually takes longer time. In addition, the demand of building survey work has made the surveyors need to obtain the data with full of accuracy and time saves. Therefore, the aim of this study is to study the limitation uses of TLS and its suitability for building survey and mapping. In this study, the efficiency of TLS Leica C10 for building survey was determined in term of its accuracy and comparing with Zeb-Revo Handheld Mobile Laser Scanning (MLS) and the distometer. The accuracy for scanned data from both, TLS and MLS were compared with the Distometer by using root mean square error (RMSE) formula. Then, the 3D model of the building for both data, TLS and MLS were produced to analyze the visualization for different type of scanners. The software used; Autodesk Recap, Autodesk Revit, Leica Cyclone Software, Autocad Software and Geo Slam Software. The RMSE for TLS technique is 0.001 m meanwhile, RMSE for MLS technique is 0.007 m. The difference between these two techniques is 0.006 m. The 3D model of building for both models did not have too much different but the scanned data from TLS is much easier to process and generate the 3D model compared to scanned data from MLS. It is because the scanned data from TLS comes with an image, while none from MLS scanned data. There are limitations of TLS for building survey such as water and glass window but this study proved that acquiring data by TLS is better than using MLS.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019
- https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W9/663/2019/isprs-archives-XLII-2-W9-663-2019.pdf
- OA Status
- diamond
- Cited By
- 11
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2914335410
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2914335410Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019Digital Object Identifier
- Title
-
THE SUITABILITY OF TERRESTRIAL LASER SCANNING FOR BUILDING SURVEY AND MAPPING APPLICATIONSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-31Full publication date if available
- Authors
-
N. A. S. Russhakim, Mohd Farid Mohd Ariff, Zulkepli Majid, Khairulnizam M. Idris, Norhadija Darwin, Mohd Azwan Abbas, Khairulazhar Zainuddin, A. R. YusoffList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019Publisher landing page
- PDF URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W9/663/2019/isprs-archives-XLII-2-W9-663-2019.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W9/663/2019/isprs-archives-XLII-2-W9-663-2019.pdfDirect OA link when available
- Concepts
-
Point cloud, Laser scanning, Computer science, Documentation, Mobile mapping, Scanner, Visualization, Total station, Software, Computer graphics (images), Mean squared error, Remote sensing, Mobile device, Data mining, Computer vision, Laser, Artificial intelligence, Geography, Statistics, Mathematics, Optics, World Wide Web, Cartography, Physics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2, 2023: 3, 2022: 2, 2021: 2, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2914335410 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019 |
| ids.mag | 2914335410 |
| ids.openalex | https://openalex.org/W2914335410 |
| fwci | 2.59828657 |
| type | article |
| title | THE SUITABILITY OF TERRESTRIAL LASER SCANNING FOR BUILDING SURVEY AND MAPPING APPLICATIONS |
| biblio.issue | |
| biblio.volume | XLII-2/W9 |
| biblio.last_page | 670 |
| biblio.first_page | 663 |
| topics[0].id | https://openalex.org/T11211 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1907 |
| topics[0].subfield.display_name | Geology |
| topics[0].display_name | 3D Surveying and Cultural Heritage |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T12698 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9884999990463257 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2215 |
| topics[2].subfield.display_name | Building and Construction |
| topics[2].display_name | 3D Modeling in Geospatial Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C131979681 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8535954356193542 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[0].display_name | Point cloud |
| concepts[1].id | https://openalex.org/C141349535 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7514691352844238 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1361664 |
| concepts[1].display_name | Laser scanning |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6806008815765381 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C56666940 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5731490850448608 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q788790 |
| concepts[3].display_name | Documentation |
| concepts[4].id | https://openalex.org/C2776821279 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5419562458992004 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2293902 |
| concepts[4].display_name | Mobile mapping |
| concepts[5].id | https://openalex.org/C2779751349 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4963584542274475 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1474480 |
| concepts[5].display_name | Scanner |
| concepts[6].id | https://openalex.org/C36464697 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49601301550865173 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q451553 |
| concepts[6].display_name | Visualization |
| concepts[7].id | https://openalex.org/C168498295 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48505038022994995 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q641296 |
| concepts[7].display_name | Total station |
| concepts[8].id | https://openalex.org/C2777904410 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47732076048851013 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[8].display_name | Software |
| concepts[9].id | https://openalex.org/C121684516 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4559285640716553 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[9].display_name | Computer graphics (images) |
| concepts[10].id | https://openalex.org/C139945424 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42899996042251587 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[10].display_name | Mean squared error |
| concepts[11].id | https://openalex.org/C62649853 |
| concepts[11].level | 1 |
| concepts[11].score | 0.41600126028060913 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[11].display_name | Remote sensing |
| concepts[12].id | https://openalex.org/C186967261 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4133094847202301 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5082128 |
| concepts[12].display_name | Mobile device |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.310401976108551 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2714766561985016 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C520434653 |
| concepts[15].level | 2 |
| concepts[15].score | 0.26260003447532654 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q38867 |
| concepts[15].display_name | Laser |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.2597719430923462 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C205649164 |
| concepts[17].level | 0 |
| concepts[17].score | 0.18595510721206665 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[17].display_name | Geography |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.13496655225753784 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C33923547 |
| concepts[19].level | 0 |
| concepts[19].score | 0.11178320646286011 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[19].display_name | Mathematics |
| concepts[20].id | https://openalex.org/C120665830 |
| concepts[20].level | 1 |
| concepts[20].score | 0.10499849915504456 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[20].display_name | Optics |
| concepts[21].id | https://openalex.org/C136764020 |
| concepts[21].level | 1 |
| concepts[21].score | 0.10415223240852356 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[21].display_name | World Wide Web |
| concepts[22].id | https://openalex.org/C58640448 |
| concepts[22].level | 1 |
| concepts[22].score | 0.1016402542591095 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[22].display_name | Cartography |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| concepts[24].id | https://openalex.org/C199360897 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[24].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/point-cloud |
| keywords[0].score | 0.8535954356193542 |
| keywords[0].display_name | Point cloud |
| keywords[1].id | https://openalex.org/keywords/laser-scanning |
| keywords[1].score | 0.7514691352844238 |
| keywords[1].display_name | Laser scanning |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6806008815765381 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/documentation |
| keywords[3].score | 0.5731490850448608 |
| keywords[3].display_name | Documentation |
| keywords[4].id | https://openalex.org/keywords/mobile-mapping |
| keywords[4].score | 0.5419562458992004 |
| keywords[4].display_name | Mobile mapping |
| keywords[5].id | https://openalex.org/keywords/scanner |
| keywords[5].score | 0.4963584542274475 |
| keywords[5].display_name | Scanner |
| keywords[6].id | https://openalex.org/keywords/visualization |
| keywords[6].score | 0.49601301550865173 |
| keywords[6].display_name | Visualization |
| keywords[7].id | https://openalex.org/keywords/total-station |
| keywords[7].score | 0.48505038022994995 |
| keywords[7].display_name | Total station |
| keywords[8].id | https://openalex.org/keywords/software |
| keywords[8].score | 0.47732076048851013 |
| keywords[8].display_name | Software |
| keywords[9].id | https://openalex.org/keywords/computer-graphics |
| keywords[9].score | 0.4559285640716553 |
| keywords[9].display_name | Computer graphics (images) |
| keywords[10].id | https://openalex.org/keywords/mean-squared-error |
| keywords[10].score | 0.42899996042251587 |
| keywords[10].display_name | Mean squared error |
| keywords[11].id | https://openalex.org/keywords/remote-sensing |
| keywords[11].score | 0.41600126028060913 |
| keywords[11].display_name | Remote sensing |
| keywords[12].id | https://openalex.org/keywords/mobile-device |
| keywords[12].score | 0.4133094847202301 |
| keywords[12].display_name | Mobile device |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.310401976108551 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/computer-vision |
| keywords[14].score | 0.2714766561985016 |
| keywords[14].display_name | Computer vision |
| keywords[15].id | https://openalex.org/keywords/laser |
| keywords[15].score | 0.26260003447532654 |
| keywords[15].display_name | Laser |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.2597719430923462 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/geography |
| keywords[17].score | 0.18595510721206665 |
| keywords[17].display_name | Geography |
| keywords[18].id | https://openalex.org/keywords/statistics |
| keywords[18].score | 0.13496655225753784 |
| keywords[18].display_name | Statistics |
| keywords[19].id | https://openalex.org/keywords/mathematics |
| keywords[19].score | 0.11178320646286011 |
| keywords[19].display_name | Mathematics |
| keywords[20].id | https://openalex.org/keywords/optics |
| keywords[20].score | 0.10499849915504456 |
| keywords[20].display_name | Optics |
| keywords[21].id | https://openalex.org/keywords/world-wide-web |
| keywords[21].score | 0.10415223240852356 |
| keywords[21].display_name | World Wide Web |
| keywords[22].id | https://openalex.org/keywords/cartography |
| keywords[22].score | 0.1016402542591095 |
| keywords[22].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xlii-2-w9-663-2019 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W9/663/2019/isprs-archives-XLII-2-W9-663-2019.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019 |
| locations[1].id | pmh:oai:doaj.org/article:3fffd73e734b438db6a38b4d0c15cdcb |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLII-2-W9, Pp 663-670 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/3fffd73e734b438db6a38b4d0c15cdcb |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5077853727 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | N. A. S. Russhakim |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[0].affiliations[0].raw_affiliation_string | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I4576418 |
| authorships[0].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | University of Technology Malaysia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | N. A. S. Russhakim |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[1].author.id | https://openalex.org/A5083801787 |
| authorships[1].author.orcid | https://orcid.org/0009-0009-4102-0124 |
| authorships[1].author.display_name | Mohd Farid Mohd Ariff |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[1].affiliations[0].raw_affiliation_string | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I4576418 |
| authorships[1].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | University of Technology Malaysia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | M. F. M. Ariff |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[2].author.id | https://openalex.org/A5047702500 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5500-7491 |
| authorships[2].author.display_name | Zulkepli Majid |
| authorships[2].countries | MY |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[2].affiliations[0].raw_affiliation_string | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[2].institutions[0].id | https://openalex.org/I4576418 |
| authorships[2].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[2].institutions[0].country_code | MY |
| authorships[2].institutions[0].display_name | University of Technology Malaysia |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Z. Majid |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[3].author.id | https://openalex.org/A5112777341 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Khairulnizam M. Idris |
| authorships[3].countries | MY |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[3].affiliations[0].raw_affiliation_string | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[3].institutions[0].id | https://openalex.org/I4576418 |
| authorships[3].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[3].institutions[0].country_code | MY |
| authorships[3].institutions[0].display_name | University of Technology Malaysia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | K. M. Idris |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[4].author.id | https://openalex.org/A5111275005 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Norhadija Darwin |
| authorships[4].countries | MY |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[4].affiliations[0].raw_affiliation_string | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[4].institutions[0].id | https://openalex.org/I4576418 |
| authorships[4].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[4].institutions[0].country_code | MY |
| authorships[4].institutions[0].display_name | University of Technology Malaysia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | N. Darwin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[5].author.id | https://openalex.org/A5103186306 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4846-8705 |
| authorships[5].author.display_name | Mohd Azwan Abbas |
| authorships[5].countries | MY |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I82724352 |
| authorships[5].affiliations[0].raw_affiliation_string | Centre of Study for Surveying Science and Geomatic, Faculty of Architecture Planning and Surveying, Universiti Teknologi MARA, Malaysia |
| authorships[5].institutions[0].id | https://openalex.org/I82724352 |
| authorships[5].institutions[0].ror | https://ror.org/05n8tts92 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I82724352 |
| authorships[5].institutions[0].country_code | MY |
| authorships[5].institutions[0].display_name | Universiti Teknologi MARA |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | M. A. Abbas |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Centre of Study for Surveying Science and Geomatic, Faculty of Architecture Planning and Surveying, Universiti Teknologi MARA, Malaysia |
| authorships[6].author.id | https://openalex.org/A5009306531 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2121-461X |
| authorships[6].author.display_name | Khairulazhar Zainuddin |
| authorships[6].countries | MY |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I82724352 |
| authorships[6].affiliations[0].raw_affiliation_string | Centre of Study for Surveying Science and Geomatic, Faculty of Architecture Planning and Surveying, Universiti Teknologi MARA, Malaysia |
| authorships[6].institutions[0].id | https://openalex.org/I82724352 |
| authorships[6].institutions[0].ror | https://ror.org/05n8tts92 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I82724352 |
| authorships[6].institutions[0].country_code | MY |
| authorships[6].institutions[0].display_name | Universiti Teknologi MARA |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | K. Zainuddin |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Centre of Study for Surveying Science and Geomatic, Faculty of Architecture Planning and Surveying, Universiti Teknologi MARA, Malaysia |
| authorships[7].author.id | https://openalex.org/A5007441631 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3480-2514 |
| authorships[7].author.display_name | A. R. Yusoff |
| authorships[7].countries | MY |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4576418 |
| authorships[7].affiliations[0].raw_affiliation_string | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| authorships[7].institutions[0].id | https://openalex.org/I4576418 |
| authorships[7].institutions[0].ror | https://ror.org/026w31v75 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4576418 |
| authorships[7].institutions[0].country_code | MY |
| authorships[7].institutions[0].display_name | University of Technology Malaysia |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | A. R. Yusoff |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Geospatial Imaging and Information Research Group, Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W9/663/2019/isprs-archives-XLII-2-W9-663-2019.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | THE SUITABILITY OF TERRESTRIAL LASER SCANNING FOR BUILDING SURVEY AND MAPPING APPLICATIONS |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11211 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1907 |
| primary_topic.subfield.display_name | Geology |
| primary_topic.display_name | 3D Surveying and Cultural Heritage |
| related_works | https://openalex.org/W2088131065, https://openalex.org/W2005998065, https://openalex.org/W897367340, https://openalex.org/W4323518558, https://openalex.org/W2001220299, https://openalex.org/W2286704396, https://openalex.org/W3039299368, https://openalex.org/W3196715007, https://openalex.org/W2366440988, https://openalex.org/W2358582870 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xlii-2-w9-663-2019 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W9/663/2019/isprs-archives-XLII-2-W9-663-2019.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019 |
| primary_location.id | doi:10.5194/isprs-archives-xlii-2-w9-663-2019 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W9/663/2019/isprs-archives-XLII-2-W9-663-2019.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlii-2-w9-663-2019 |
| publication_date | 2019-01-31 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2038406388, https://openalex.org/W7006157707, https://openalex.org/W157429803, https://openalex.org/W1562684491, https://openalex.org/W2525482376, https://openalex.org/W2738792663 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 12, 66, 89 |
| abstract_inverted_index.m | 269 |
| abstract_inverted_index.3D | 24, 224, 288, 315 |
| abstract_inverted_index.In | 122, 168 |
| abstract_inverted_index.It | 323 |
| abstract_inverted_index.an | 333 |
| abstract_inverted_index.as | 350 |
| abstract_inverted_index.by | 214, 362 |
| abstract_inverted_index.in | 21, 44, 63, 65, 182 |
| abstract_inverted_index.is | 36, 99, 152, 267, 275, 284, 307, 324, 364 |
| abstract_inverted_index.it | 75 |
| abstract_inverted_index.m. | 277, 286 |
| abstract_inverted_index.of | 3, 14, 26, 31, 41, 54, 60, 70, 92, 104, 111, 126, 141, 149, 158, 173, 184, 226, 244, 290, 344 |
| abstract_inverted_index.on | 84, 88 |
| abstract_inverted_index.to | 50, 77, 94, 101, 135, 153, 237, 310, 318 |
| abstract_inverted_index.C10 | 176 |
| abstract_inverted_index.Geo | 259 |
| abstract_inverted_index.MLS | 208, 234, 273, 338 |
| abstract_inverted_index.TLS | 98, 159, 174, 206, 232, 265, 306, 330, 345, 363 |
| abstract_inverted_index.The | 1, 29, 97, 199, 246, 262, 278, 287 |
| abstract_inverted_index.aim | 148 |
| abstract_inverted_index.and | 16, 57, 114, 143, 160, 166, 187, 196, 207, 233, 258, 312, 352 |
| abstract_inverted_index.are | 342 |
| abstract_inverted_index.but | 301, 355 |
| abstract_inverted_index.did | 295 |
| abstract_inverted_index.for | 163, 177, 201, 229, 241, 264, 272, 292, 346 |
| abstract_inverted_index.has | 8, 17, 130 |
| abstract_inverted_index.its | 42, 161, 185 |
| abstract_inverted_index.not | 296 |
| abstract_inverted_index.see | 87 |
| abstract_inverted_index.the | 23, 27, 48, 79, 116, 124, 132, 137, 147, 155, 171, 197, 212, 223, 227, 239, 302, 314, 326 |
| abstract_inverted_index.too | 298 |
| abstract_inverted_index.two | 282 |
| abstract_inverted_index.was | 180 |
| abstract_inverted_index.(2D) | 82 |
| abstract_inverted_index.MLS. | 322, 368 |
| abstract_inverted_index.RMSE | 263, 271 |
| abstract_inverted_index.Slam | 260 |
| abstract_inverted_index.able | 100 |
| abstract_inverted_index.been | 9 |
| abstract_inverted_index.both | 230, 293 |
| abstract_inverted_index.data | 83, 138, 203, 304, 320, 328, 361 |
| abstract_inverted_index.find | 74 |
| abstract_inverted_index.flat | 90 |
| abstract_inverted_index.from | 204, 305, 321, 329, 337 |
| abstract_inverted_index.full | 140 |
| abstract_inverted_index.have | 297 |
| abstract_inverted_index.into | 11 |
| abstract_inverted_index.made | 115, 131 |
| abstract_inverted_index.maps | 85 |
| abstract_inverted_index.mean | 217 |
| abstract_inverted_index.much | 299, 308 |
| abstract_inverted_index.need | 134 |
| abstract_inverted_index.none | 336 |
| abstract_inverted_index.plan | 72 |
| abstract_inverted_index.rich | 110 |
| abstract_inverted_index.root | 216 |
| abstract_inverted_index.such | 349 |
| abstract_inverted_index.term | 183 |
| abstract_inverted_index.than | 366 |
| abstract_inverted_index.that | 359 |
| abstract_inverted_index.they | 86 |
| abstract_inverted_index.this | 150, 169, 356 |
| abstract_inverted_index.time | 144 |
| abstract_inverted_index.type | 243 |
| abstract_inverted_index.used | 30 |
| abstract_inverted_index.uses | 157 |
| abstract_inverted_index.very | 109 |
| abstract_inverted_index.were | 209, 235 |
| abstract_inverted_index.with | 139, 189, 211, 332 |
| abstract_inverted_index.work | 129 |
| abstract_inverted_index.(3D). | 96 |
| abstract_inverted_index.(MLS) | 195 |
| abstract_inverted_index.(TLS) | 7, 35 |
| abstract_inverted_index.0.001 | 268 |
| abstract_inverted_index.0.006 | 285 |
| abstract_inverted_index.0.007 | 276 |
| abstract_inverted_index.Laser | 5, 193 |
| abstract_inverted_index.Leica | 175, 253 |
| abstract_inverted_index.Then, | 222 |
| abstract_inverted_index.There | 341 |
| abstract_inverted_index.Users | 69 |
| abstract_inverted_index.both, | 205 |
| abstract_inverted_index.cloud | 62 |
| abstract_inverted_index.comes | 331 |
| abstract_inverted_index.data, | 231 |
| abstract_inverted_index.data. | 340 |
| abstract_inverted_index.error | 219 |
| abstract_inverted_index.field | 13 |
| abstract_inverted_index.glass | 353 |
| abstract_inverted_index.laser | 33 |
| abstract_inverted_index.model | 25, 225, 289, 316 |
| abstract_inverted_index.paper | 93 |
| abstract_inverted_index.piece | 91 |
| abstract_inverted_index.point | 61, 105 |
| abstract_inverted_index.short | 67 |
| abstract_inverted_index.study | 151, 154, 357 |
| abstract_inverted_index.takes | 119 |
| abstract_inverted_index.these | 281 |
| abstract_inverted_index.time. | 121 |
| abstract_inverted_index.used; | 248 |
| abstract_inverted_index.using | 215, 367 |
| abstract_inverted_index.water | 351 |
| abstract_inverted_index.which | 107 |
| abstract_inverted_index.while | 335 |
| abstract_inverted_index.(RMSE) | 220 |
| abstract_inverted_index.Mobile | 192 |
| abstract_inverted_index.Recap, | 250 |
| abstract_inverted_index.Revit, | 252 |
| abstract_inverted_index.better | 365 |
| abstract_inverted_index.clouds | 106 |
| abstract_inverted_index.demand | 125 |
| abstract_inverted_index.easier | 309 |
| abstract_inverted_index.image, | 334 |
| abstract_inverted_index.longer | 120 |
| abstract_inverted_index.models | 294 |
| abstract_inverted_index.obtain | 136 |
| abstract_inverted_index.proved | 358 |
| abstract_inverted_index.record | 102 |
| abstract_inverted_index.saves. | 145 |
| abstract_inverted_index.square | 218 |
| abstract_inverted_index.study, | 170 |
| abstract_inverted_index.survey | 128, 165, 179, 348 |
| abstract_inverted_index.window | 354 |
| abstract_inverted_index.Autocad | 256 |
| abstract_inverted_index.Cyclone | 254 |
| abstract_inverted_index.Scanner | 6 |
| abstract_inverted_index.ability | 43, 49 |
| abstract_inverted_index.analyze | 238 |
| abstract_inverted_index.because | 40, 325 |
| abstract_inverted_index.between | 280 |
| abstract_inverted_index.complex | 52, 55 |
| abstract_inverted_index.details | 113 |
| abstract_inverted_index.observe | 51, 58 |
| abstract_inverted_index.period. | 68 |
| abstract_inverted_index.popular | 39 |
| abstract_inverted_index.process | 311 |
| abstract_inverted_index.rapidly | 38 |
| abstract_inverted_index.scanned | 202, 303, 319, 327, 339 |
| abstract_inverted_index.several | 45 |
| abstract_inverted_index.usually | 73, 118 |
| abstract_inverted_index.Autodesk | 249, 251 |
| abstract_inverted_index.Handheld | 191 |
| abstract_inverted_index.Scanning | 194 |
| abstract_inverted_index.Software | 257 |
| abstract_inverted_index.Zeb-Revo | 190 |
| abstract_inverted_index.accuracy | 142, 186, 200 |
| abstract_inverted_index.becoming | 37 |
| abstract_inverted_index.building | 56, 71, 127, 164, 178, 228, 291, 347 |
| abstract_inverted_index.compared | 210, 317 |
| abstract_inverted_index.contains | 108 |
| abstract_inverted_index.formula. | 221 |
| abstract_inverted_index.generate | 313 |
| abstract_inverted_index.geometry | 112 |
| abstract_inverted_index.mapping. | 167 |
| abstract_inverted_index.millions | 59 |
| abstract_inverted_index.produced | 236 |
| abstract_inverted_index.scanning | 34 |
| abstract_inverted_index.software | 247 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Software, | 255 |
| abstract_inverted_index.Software. | 261 |
| abstract_inverted_index.acquiring | 360 |
| abstract_inverted_index.addition, | 123 |
| abstract_inverted_index.building. | 28 |
| abstract_inverted_index.comparing | 188 |
| abstract_inverted_index.different | 242, 300 |
| abstract_inverted_index.difficult | 76 |
| abstract_inverted_index.increased | 18 |
| abstract_inverted_index.producing | 22 |
| abstract_inverted_index.scanners. | 245 |
| abstract_inverted_index.surveying | 15 |
| abstract_inverted_index.surveyors | 133 |
| abstract_inverted_index.technique | 266, 274 |
| abstract_inverted_index.thousands | 103 |
| abstract_inverted_index.translate | 78 |
| abstract_inverted_index.Distometer | 213 |
| abstract_inverted_index.Therefore, | 146 |
| abstract_inverted_index.determined | 181 |
| abstract_inverted_index.difference | 279 |
| abstract_inverted_index.efficiency | 172 |
| abstract_inverted_index.especially | 20, 47 |
| abstract_inverted_index.introduced | 10 |
| abstract_inverted_index.limitation | 156 |
| abstract_inverted_index.meanwhile, | 270 |
| abstract_inverted_index.popularity | 2 |
| abstract_inverted_index.processing | 117 |
| abstract_inverted_index.techniques | 283 |
| abstract_inverted_index.Terrestrial | 4 |
| abstract_inverted_index.distometer. | 198 |
| abstract_inverted_index.limitations | 343 |
| abstract_inverted_index.suitability | 162 |
| abstract_inverted_index.terrestrial | 32 |
| abstract_inverted_index.traditional | 80 |
| abstract_inverted_index.dramatically | 19 |
| abstract_inverted_index.applications, | 46 |
| abstract_inverted_index.documentation | 53 |
| abstract_inverted_index.visualization | 240 |
| abstract_inverted_index.two-dimensional | 81 |
| abstract_inverted_index.three-dimensional | 64, 95 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.89698113 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |