The Transdimensional Poisson Process for Vehicular Network Analysis Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/twc.2021.3089553
A comprehensive vehicular network analysis requires modeling the street\nsystem and vehicle locations. Even when Poisson point processes (PPPs) are used\nto model the vehicle locations on each street, the analysis is barely\ntractable. That holds for even a simple average-based performance metric -- the\nsuccess probability, which is a special case of the fine-grained metric, the\nmeta distribution (MD) of the signal-to-interference ratio (SIR). To address\nthis issue, we propose the transdimensional approach as an alternative. Here,\nthe union of 1D PPPs on the streets is simplified to the transdimensional PPP\n(TPPP), a superposition of 1D and 2D PPPs. The TPPP includes the 1D PPPs on the\nstreets passing through the receiving vehicle and models the remaining vehicles\nas a 2D PPP ignoring their street geometry. Through the SIR MD analysis, we\nshow that the TPPP provides good approximations to the more cumbrous models\nwith streets characterized by Poisson line/stick processes; and we prove that\nthe accuracy of the TPPP further improves under shadowing. Lastly, we use the\nMD results to control network congestion by adjusting the transmit rate while\nmaintaining a target fraction of reliable links. A key insight is that the\nsuccess probability is an inadequate measure of congestion as it does not\ncapture the reliabilities of the individual links.\n
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/twc.2021.3089553
- OA Status
- green
- Cited By
- 13
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3177117848
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3177117848Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/twc.2021.3089553Digital Object Identifier
- Title
-
The Transdimensional Poisson Process for Vehicular Network AnalysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-22Full publication date if available
- Authors
-
Jeya Pradha Jeyaraj, Martin Haenggi, Ahmed Hamdi Sakr, Hongsheng LuList of authors in order
- Landing page
-
https://doi.org/10.1109/twc.2021.3089553Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.13846Direct OA link when available
- Concepts
-
Metric (unit), Computer science, Coverage probability, Poisson distribution, Nakagami distribution, Interference (communication), Line (geometry), Mathematics, Statistics, Computer network, Engineering, Fading, Confidence interval, Operations management, Channel (broadcasting), GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 5, 2023: 3, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3177117848 |
|---|---|
| doi | https://doi.org/10.1109/twc.2021.3089553 |
| ids.doi | https://doi.org/10.1109/twc.2021.3089553 |
| ids.mag | 3177117848 |
| ids.openalex | https://openalex.org/W3177117848 |
| fwci | 0.91681423 |
| type | article |
| title | The Transdimensional Poisson Process for Vehicular Network Analysis |
| awards[0].id | https://openalex.org/G8482924771 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | CCF 2007498 |
| awards[0].funder_display_name | National Science Foundation |
| biblio.issue | 12 |
| biblio.volume | 20 |
| biblio.last_page | 8038 |
| biblio.first_page | 8023 |
| topics[0].id | https://openalex.org/T10761 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Vehicular Ad Hoc Networks (VANETs) |
| topics[1].id | https://openalex.org/T12315 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3612 |
| topics[1].subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| topics[1].display_name | Older Adults Driving Studies |
| topics[2].id | https://openalex.org/T10524 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.992900013923645 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Traffic control and management |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C176217482 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7265180945396423 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[0].display_name | Metric (unit) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5650591850280762 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776292839 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5474111437797546 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5179217 |
| concepts[2].display_name | Coverage probability |
| concepts[3].id | https://openalex.org/C100906024 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5397191643714905 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[3].display_name | Poisson distribution |
| concepts[4].id | https://openalex.org/C115098869 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5366653203964233 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3258347 |
| concepts[4].display_name | Nakagami distribution |
| concepts[5].id | https://openalex.org/C32022120 |
| concepts[5].level | 3 |
| concepts[5].score | 0.48458564281463623 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q797225 |
| concepts[5].display_name | Interference (communication) |
| concepts[6].id | https://openalex.org/C198352243 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4236254394054413 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[6].display_name | Line (geometry) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.23514476418495178 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.22395020723342896 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C31258907 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1789822280406952 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[9].display_name | Computer network |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1380133330821991 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C81978471 |
| concepts[11].level | 3 |
| concepts[11].score | 0.09082663059234619 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1196572 |
| concepts[11].display_name | Fading |
| concepts[12].id | https://openalex.org/C44249647 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[12].display_name | Confidence interval |
| concepts[13].id | https://openalex.org/C21547014 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[13].display_name | Operations management |
| concepts[14].id | https://openalex.org/C127162648 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[14].display_name | Channel (broadcasting) |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/metric |
| keywords[0].score | 0.7265180945396423 |
| keywords[0].display_name | Metric (unit) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5650591850280762 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/coverage-probability |
| keywords[2].score | 0.5474111437797546 |
| keywords[2].display_name | Coverage probability |
| keywords[3].id | https://openalex.org/keywords/poisson-distribution |
| keywords[3].score | 0.5397191643714905 |
| keywords[3].display_name | Poisson distribution |
| keywords[4].id | https://openalex.org/keywords/nakagami-distribution |
| keywords[4].score | 0.5366653203964233 |
| keywords[4].display_name | Nakagami distribution |
| keywords[5].id | https://openalex.org/keywords/interference |
| keywords[5].score | 0.48458564281463623 |
| keywords[5].display_name | Interference (communication) |
| keywords[6].id | https://openalex.org/keywords/line |
| keywords[6].score | 0.4236254394054413 |
| keywords[6].display_name | Line (geometry) |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.23514476418495178 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.22395020723342896 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/computer-network |
| keywords[9].score | 0.1789822280406952 |
| keywords[9].display_name | Computer network |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.1380133330821991 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/fading |
| keywords[11].score | 0.09082663059234619 |
| keywords[11].display_name | Fading |
| language | en |
| locations[0].id | doi:10.1109/twc.2021.3089553 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S63459445 |
| locations[0].source.issn | 1536-1276, 1558-2248 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1536-1276 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Wireless Communications |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Wireless Communications |
| locations[0].landing_page_url | https://doi.org/10.1109/twc.2021.3089553 |
| locations[1].id | pmh:oai:arXiv.org:2111.13846 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2111.13846 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2111.13846 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5008625789 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3954-5385 |
| authorships[0].author.display_name | Jeya Pradha Jeyaraj |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I107639228 |
| authorships[0].affiliations[0].raw_affiliation_string | [Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. (e-mail: [email protected])] |
| authorships[0].institutions[0].id | https://openalex.org/I107639228 |
| authorships[0].institutions[0].ror | https://ror.org/00mkhxb43 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I107639228 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Notre Dame |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jeya Pradha Jeyaraj |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | [Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. (e-mail: [email protected])] |
| authorships[1].author.id | https://openalex.org/A5003896287 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8547-0607 |
| authorships[1].author.display_name | Martin Haenggi |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I107639228 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. |
| authorships[1].institutions[0].id | https://openalex.org/I107639228 |
| authorships[1].institutions[0].ror | https://ror.org/00mkhxb43 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I107639228 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Notre Dame |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Martin Haenggi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA. |
| authorships[2].author.id | https://openalex.org/A5052891361 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ahmed Hamdi Sakr |
| authorships[2].countries | CA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I74413500 |
| authorships[2].affiliations[0].raw_affiliation_string | Toyota Motor North America Research and Development-InfoTech Labs, Mountain View, CA, USA; University of Windsor, Windsor, ON, Canada |
| authorships[2].institutions[0].id | https://openalex.org/I74413500 |
| authorships[2].institutions[0].ror | https://ror.org/01gw3d370 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I74413500 |
| authorships[2].institutions[0].country_code | CA |
| authorships[2].institutions[0].display_name | University of Windsor |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ahmed Hamdi Sakr |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Toyota Motor North America Research and Development-InfoTech Labs, Mountain View, CA, USA; University of Windsor, Windsor, ON, Canada |
| authorships[3].author.id | https://openalex.org/A5103149074 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9916-1899 |
| authorships[3].author.display_name | Hongsheng Lu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I107639228 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Notre Dame, Notre Dame, IN, USA |
| authorships[3].institutions[0].id | https://openalex.org/I107639228 |
| authorships[3].institutions[0].ror | https://ror.org/00mkhxb43 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I107639228 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Notre Dame |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hongsheng Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Notre Dame, Notre Dame, IN, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.13846 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Transdimensional Poisson Process for Vehicular Network Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10761 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Vehicular Ad Hoc Networks (VANETs) |
| related_works | https://openalex.org/W175993441, https://openalex.org/W2018474140, https://openalex.org/W2011537374, https://openalex.org/W2144435096, https://openalex.org/W325659403, https://openalex.org/W3025231423, https://openalex.org/W2123252160, https://openalex.org/W1994346197, https://openalex.org/W2126615296, https://openalex.org/W2076427738 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.13846 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.13846 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.13846 |
| primary_location.id | doi:10.1109/twc.2021.3089553 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S63459445 |
| primary_location.source.issn | 1536-1276, 1558-2248 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1536-1276 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Wireless Communications |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Wireless Communications |
| primary_location.landing_page_url | https://doi.org/10.1109/twc.2021.3089553 |
| publication_date | 2021-06-22 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2342826612, https://openalex.org/W2963012103, https://openalex.org/W2900826525, https://openalex.org/W1640283668, https://openalex.org/W3144541049, https://openalex.org/W3149073735, https://openalex.org/W6660445384, https://openalex.org/W2963692345, https://openalex.org/W2978031026, https://openalex.org/W2963396489, https://openalex.org/W2962721371, https://openalex.org/W2963041424, https://openalex.org/W6604968327, https://openalex.org/W3037476929, https://openalex.org/W2118166339, https://openalex.org/W3088635315, https://openalex.org/W2054402644, https://openalex.org/W631335369, https://openalex.org/W3088631253, https://openalex.org/W3010387571, https://openalex.org/W2995603513, https://openalex.org/W2735724309, https://openalex.org/W2893955145, https://openalex.org/W2964168570, https://openalex.org/W2972997844, https://openalex.org/W2570805543, https://openalex.org/W2946053252, https://openalex.org/W2041078943, https://openalex.org/W120871837 |
| referenced_works_count | 29 |
| abstract_inverted_index.A | 0, 173 |
| abstract_inverted_index.a | 35, 45, 85, 110, 167 |
| abstract_inverted_index.-- | 40 |
| abstract_inverted_index.1D | 74, 88, 96 |
| abstract_inverted_index.2D | 90, 111 |
| abstract_inverted_index.MD | 120 |
| abstract_inverted_index.To | 60 |
| abstract_inverted_index.an | 69, 181 |
| abstract_inverted_index.as | 68, 186 |
| abstract_inverted_index.by | 136, 161 |
| abstract_inverted_index.is | 29, 44, 79, 176, 180 |
| abstract_inverted_index.it | 187 |
| abstract_inverted_index.of | 48, 55, 73, 87, 145, 170, 184, 192 |
| abstract_inverted_index.on | 24, 76, 98 |
| abstract_inverted_index.to | 81, 129, 157 |
| abstract_inverted_index.we | 63, 141, 153 |
| abstract_inverted_index.PPP | 112 |
| abstract_inverted_index.SIR | 119 |
| abstract_inverted_index.The | 92 |
| abstract_inverted_index.and | 9, 89, 105, 140 |
| abstract_inverted_index.are | 18 |
| abstract_inverted_index.for | 33 |
| abstract_inverted_index.key | 174 |
| abstract_inverted_index.the | 7, 21, 27, 49, 56, 65, 77, 82, 95, 102, 107, 118, 124, 130, 146, 163, 190, 193 |
| abstract_inverted_index.use | 154 |
| abstract_inverted_index.(MD) | 54 |
| abstract_inverted_index.Even | 12 |
| abstract_inverted_index.PPPs | 75, 97 |
| abstract_inverted_index.TPPP | 93, 125, 147 |
| abstract_inverted_index.That | 31 |
| abstract_inverted_index.case | 47 |
| abstract_inverted_index.does | 188 |
| abstract_inverted_index.each | 25 |
| abstract_inverted_index.even | 34 |
| abstract_inverted_index.good | 127 |
| abstract_inverted_index.more | 131 |
| abstract_inverted_index.rate | 165 |
| abstract_inverted_index.that | 123, 177 |
| abstract_inverted_index.when | 13 |
| abstract_inverted_index.PPPs. | 91 |
| abstract_inverted_index.holds | 32 |
| abstract_inverted_index.model | 20 |
| abstract_inverted_index.point | 15 |
| abstract_inverted_index.prove | 142 |
| abstract_inverted_index.ratio | 58 |
| abstract_inverted_index.their | 114 |
| abstract_inverted_index.under | 150 |
| abstract_inverted_index.union | 72 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.(PPPs) | 17 |
| abstract_inverted_index.(SIR). | 59 |
| abstract_inverted_index.issue, | 62 |
| abstract_inverted_index.links. | 172 |
| abstract_inverted_index.metric | 39 |
| abstract_inverted_index.models | 106 |
| abstract_inverted_index.simple | 36 |
| abstract_inverted_index.street | 115 |
| abstract_inverted_index.target | 168 |
| abstract_inverted_index.Lastly, | 152 |
| abstract_inverted_index.Poisson | 14, 137 |
| abstract_inverted_index.Through | 117 |
| abstract_inverted_index.control | 158 |
| abstract_inverted_index.further | 148 |
| abstract_inverted_index.insight | 175 |
| abstract_inverted_index.measure | 183 |
| abstract_inverted_index.metric, | 51 |
| abstract_inverted_index.network | 3, 159 |
| abstract_inverted_index.passing | 100 |
| abstract_inverted_index.propose | 64 |
| abstract_inverted_index.results | 156 |
| abstract_inverted_index.special | 46 |
| abstract_inverted_index.street, | 26 |
| abstract_inverted_index.streets | 78, 134 |
| abstract_inverted_index.the\nMD | 155 |
| abstract_inverted_index.through | 101 |
| abstract_inverted_index.vehicle | 10, 22, 104 |
| abstract_inverted_index.accuracy | 144 |
| abstract_inverted_index.analysis | 4, 28 |
| abstract_inverted_index.approach | 67 |
| abstract_inverted_index.cumbrous | 132 |
| abstract_inverted_index.fraction | 169 |
| abstract_inverted_index.ignoring | 113 |
| abstract_inverted_index.improves | 149 |
| abstract_inverted_index.includes | 94 |
| abstract_inverted_index.links.\n | 195 |
| abstract_inverted_index.modeling | 6 |
| abstract_inverted_index.provides | 126 |
| abstract_inverted_index.reliable | 171 |
| abstract_inverted_index.requires | 5 |
| abstract_inverted_index.transmit | 164 |
| abstract_inverted_index.used\nto | 19 |
| abstract_inverted_index.we\nshow | 122 |
| abstract_inverted_index.adjusting | 162 |
| abstract_inverted_index.analysis, | 121 |
| abstract_inverted_index.geometry. | 116 |
| abstract_inverted_index.locations | 23 |
| abstract_inverted_index.processes | 16 |
| abstract_inverted_index.receiving | 103 |
| abstract_inverted_index.remaining | 108 |
| abstract_inverted_index.that\nthe | 143 |
| abstract_inverted_index.the\nmeta | 52 |
| abstract_inverted_index.vehicular | 2 |
| abstract_inverted_index.Here,\nthe | 71 |
| abstract_inverted_index.congestion | 160, 185 |
| abstract_inverted_index.inadequate | 182 |
| abstract_inverted_index.individual | 194 |
| abstract_inverted_index.line/stick | 138 |
| abstract_inverted_index.locations. | 11 |
| abstract_inverted_index.processes; | 139 |
| abstract_inverted_index.shadowing. | 151 |
| abstract_inverted_index.simplified | 80 |
| abstract_inverted_index.performance | 38 |
| abstract_inverted_index.probability | 179 |
| abstract_inverted_index.PPP\n(TPPP), | 84 |
| abstract_inverted_index.alternative. | 70 |
| abstract_inverted_index.distribution | 53 |
| abstract_inverted_index.fine-grained | 50 |
| abstract_inverted_index.models\nwith | 133 |
| abstract_inverted_index.not\ncapture | 189 |
| abstract_inverted_index.probability, | 42 |
| abstract_inverted_index.the\nstreets | 99 |
| abstract_inverted_index.the\nsuccess | 41, 178 |
| abstract_inverted_index.vehicles\nas | 109 |
| abstract_inverted_index.address\nthis | 61 |
| abstract_inverted_index.average-based | 37 |
| abstract_inverted_index.characterized | 135 |
| abstract_inverted_index.comprehensive | 1 |
| abstract_inverted_index.reliabilities | 191 |
| abstract_inverted_index.superposition | 86 |
| abstract_inverted_index.approximations | 128 |
| abstract_inverted_index.street\nsystem | 8 |
| abstract_inverted_index.transdimensional | 66, 83 |
| abstract_inverted_index.barely\ntractable. | 30 |
| abstract_inverted_index.while\nmaintaining | 166 |
| abstract_inverted_index.signal-to-interference | 57 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.76172136 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |