The Value of Model Based on Radiomics Features of T2-weighted Imaging and Clinical Feature in Diagnosing the Depth of Stromal Invasion of Cervical Squamous Cell Carcinoma Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.12290/xhyxzz.2021-0437
Objective To investigate the prediction value of a clinical-radiomics model based on T2- weighted imaging (T2WI) and clinical features for diagnosing deep stromal invasion (DSI) in patients with early-stage cervical squamous cell carcinoma. Methods Patients with early-stage cervical squamous cell carcinoma that underwent radical hysterectomy in Peking Union Medical College Hospital from January 2017 to February 2021 were retrospectively included and randomly divided into the training set and the validation set with the the ratio of 8∶2. The preoperative clinical features and the radiomics features of sagittal T2WI images were obtained. After selection of key features, a radiomics model, a clinical model, and a clinical-radiomics model for diagnosing DSI in early-stage cervical squamous cell carcinoma were developed by Logistic regression based on the training set. The performance of different models was compared by the receiver operating characteristic (ROC) curve in the validation set. Results A total of 168 patients with early-stage cervical squamous cell carcinoma that met the inclusion and exclusion criteria were included in this study. They were randomly divided into the training set (n=135) and the validation set (n=33), in which 72 cases had histopathologically confirmed superficial stromal invasion and 96 cases had DSI. Four radiomics features and three clinical parameters (age, Federation International of Gynecology and Obstetrics stage, and preoperative squamous cell carcinoma antigen levels) were selected and used to develop models. In the validation set, the clinical-radiomics model showed better diagnostic performance with the area under the curve (AUC) of 0.820 (95% CI: 0.665-0.974) than the clinical model[AUC: 0.797(95% CI: 0.623-0.971)] and the radiomics model[AUC: 0.793(95% CI: 0.633-0.954)].The sensitivity, specificity, and accuracy of the clinical-radiomics model were 85.7%(95% CI: 49.8%-100%), 73.7%(95% CI: 57.9%-100%), and 78.8%(95% CI: 69.7%-93.9%), respectively. Conclusion Radiomics features based on T2WI images combined with clinical features can be used as a noninvasive preoperative method to determine the depth of stromal invasion in early-stage cervical squamous cell carcinoma.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doaj.org/article/b747ba19bf464533bbd8a734a4797f4c
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200298287
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200298287Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.12290/xhyxzz.2021-0437Digital Object Identifier
- Title
-
The Value of Model Based on Radiomics Features of T2-weighted Imaging and Clinical Feature in Diagnosing the Depth of Stromal Invasion of Cervical Squamous Cell CarcinomaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-01Full publication date if available
- Authors
-
Jing Ren, Yonglan He, Yuan Li, Cao Ying, Xia Chen, Xiang Yang, Xue Huadan, Zhengyu JinList of authors in order
- Landing page
-
https://doaj.org/article/b747ba19bf464533bbd8a734a4797f4cPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doaj.org/article/b747ba19bf464533bbd8a734a4797f4cDirect OA link when available
- Concepts
-
Radiomics, Stromal cell, Feature (linguistics), Basal cell, Cervical carcinoma, Medicine, Value (mathematics), Pathology, Radiology, Computer science, Cervical cancer, Internal medicine, Cancer, Machine learning, Philosophy, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200298287 |
|---|---|
| doi | https://doi.org/10.12290/xhyxzz.2021-0437 |
| ids.openalex | https://openalex.org/W4200298287 |
| fwci | 0.0 |
| type | article |
| title | The Value of Model Based on Radiomics Features of T2-weighted Imaging and Clinical Feature in Diagnosing the Depth of Stromal Invasion of Cervical Squamous Cell Carcinoma |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778559731 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8976606130599976 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q23808793 |
| concepts[0].display_name | Radiomics |
| concepts[1].id | https://openalex.org/C16930146 |
| concepts[1].level | 2 |
| concepts[1].score | 0.689382016658783 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q4381253 |
| concepts[1].display_name | Stromal cell |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6787500381469727 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C3019992690 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5290547609329224 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q92767510 |
| concepts[3].display_name | Basal cell |
| concepts[4].id | https://openalex.org/C2993195994 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5184497237205505 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160105 |
| concepts[4].display_name | Cervical carcinoma |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4930860698223114 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C2776291640 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42903149127960205 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[6].display_name | Value (mathematics) |
| concepts[7].id | https://openalex.org/C142724271 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4188682436943054 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[7].display_name | Pathology |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4003884792327881 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.24116653203964233 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C2778220009 |
| concepts[10].level | 3 |
| concepts[10].score | 0.22561684250831604 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q160105 |
| concepts[10].display_name | Cervical cancer |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.15638169646263123 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| concepts[12].id | https://openalex.org/C121608353 |
| concepts[12].level | 2 |
| concepts[12].score | 0.11399570107460022 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[12].display_name | Cancer |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.057470113039016724 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C41895202 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[15].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/radiomics |
| keywords[0].score | 0.8976606130599976 |
| keywords[0].display_name | Radiomics |
| keywords[1].id | https://openalex.org/keywords/stromal-cell |
| keywords[1].score | 0.689382016658783 |
| keywords[1].display_name | Stromal cell |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.6787500381469727 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/basal-cell |
| keywords[3].score | 0.5290547609329224 |
| keywords[3].display_name | Basal cell |
| keywords[4].id | https://openalex.org/keywords/cervical-carcinoma |
| keywords[4].score | 0.5184497237205505 |
| keywords[4].display_name | Cervical carcinoma |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.4930860698223114 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/value |
| keywords[6].score | 0.42903149127960205 |
| keywords[6].display_name | Value (mathematics) |
| keywords[7].id | https://openalex.org/keywords/pathology |
| keywords[7].score | 0.4188682436943054 |
| keywords[7].display_name | Pathology |
| keywords[8].id | https://openalex.org/keywords/radiology |
| keywords[8].score | 0.4003884792327881 |
| keywords[8].display_name | Radiology |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.24116653203964233 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/cervical-cancer |
| keywords[10].score | 0.22561684250831604 |
| keywords[10].display_name | Cervical cancer |
| keywords[11].id | https://openalex.org/keywords/internal-medicine |
| keywords[11].score | 0.15638169646263123 |
| keywords[11].display_name | Internal medicine |
| keywords[12].id | https://openalex.org/keywords/cancer |
| keywords[12].score | 0.11399570107460022 |
| keywords[12].display_name | Cancer |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.057470113039016724 |
| keywords[13].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:doaj.org/article:b747ba19bf464533bbd8a734a4797f4c |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401280 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | Xiehe Yixue Zazhi, Vol 12, Iss 5, Pp 705-712 (2021) |
| locations[0].landing_page_url | https://doaj.org/article/b747ba19bf464533bbd8a734a4797f4c |
| indexed_in | doaj |
| authorships[0].author.id | https://openalex.org/A5024178953 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1317-1696 |
| authorships[0].author.display_name | Jing Ren |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200296433, https://openalex.org/I2801228662 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[0].institutions[0].id | https://openalex.org/I200296433 |
| authorships[0].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[0].institutions[1].id | https://openalex.org/I2801228662 |
| authorships[0].institutions[1].ror | https://ror.org/04jztag35 |
| authorships[0].institutions[1].type | healthcare |
| authorships[0].institutions[1].lineage | https://openalex.org/I2801228662 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Peking Union Medical College Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | REN Jing |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[1].author.id | https://openalex.org/A5046572548 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2946-4752 |
| authorships[1].author.display_name | Yonglan He |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200296433, https://openalex.org/I2801228662 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[1].institutions[0].id | https://openalex.org/I200296433 |
| authorships[1].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[1].institutions[1].id | https://openalex.org/I2801228662 |
| authorships[1].institutions[1].ror | https://ror.org/04jztag35 |
| authorships[1].institutions[1].type | healthcare |
| authorships[1].institutions[1].lineage | https://openalex.org/I2801228662 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Peking Union Medical College Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | HE Yonglan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[2].author.id | https://openalex.org/A5064837903 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9004-5146 |
| authorships[2].author.display_name | Yuan Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200296433, https://openalex.org/I2801228662 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[2].institutions[0].id | https://openalex.org/I200296433 |
| authorships[2].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[2].institutions[1].id | https://openalex.org/I2801228662 |
| authorships[2].institutions[1].ror | https://ror.org/04jztag35 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I2801228662 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Peking Union Medical College Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | LI Yuan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[3].author.id | https://openalex.org/A5103795338 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Cao Ying |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210111607 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Infervision Technology Co., Ltd, Beijing 100124, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210111607 |
| authorships[3].institutions[0].ror | https://ror.org/027h3dg90 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210111607 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | InferVision (China) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | CAO Ying |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Infervision Technology Co., Ltd, Beijing 100124, China |
| authorships[4].author.id | https://openalex.org/A5100758704 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1019-3075 |
| authorships[4].author.display_name | Xia Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210111607 |
| authorships[4].affiliations[0].raw_affiliation_string | Beijing Infervision Technology Co., Ltd, Beijing 100124, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210111607 |
| authorships[4].institutions[0].ror | https://ror.org/027h3dg90 |
| authorships[4].institutions[0].type | company |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210111607 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | InferVision (China) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | XIA Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Beijing Infervision Technology Co., Ltd, Beijing 100124, China |
| authorships[5].author.id | https://openalex.org/A5103810758 |
| authorships[5].author.orcid | https://orcid.org/0009-0006-2016-2033 |
| authorships[5].author.display_name | Xiang Yang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I200296433, https://openalex.org/I2801228662 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[5].institutions[0].id | https://openalex.org/I200296433 |
| authorships[5].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[5].institutions[1].id | https://openalex.org/I2801228662 |
| authorships[5].institutions[1].ror | https://ror.org/04jztag35 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I2801228662 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Peking Union Medical College Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | XIANG Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[6].author.id | https://openalex.org/A5101019661 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Xue Huadan |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I200296433, https://openalex.org/I2801228662 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[6].institutions[0].id | https://openalex.org/I200296433 |
| authorships[6].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[6].institutions[1].id | https://openalex.org/I2801228662 |
| authorships[6].institutions[1].ror | https://ror.org/04jztag35 |
| authorships[6].institutions[1].type | healthcare |
| authorships[6].institutions[1].lineage | https://openalex.org/I2801228662 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Peking Union Medical College Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | XUE Huadan |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[7].author.id | https://openalex.org/A5078134324 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6179-9632 |
| authorships[7].author.display_name | Zhengyu Jin |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I200296433, https://openalex.org/I2801228662 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| authorships[7].institutions[0].id | https://openalex.org/I200296433 |
| authorships[7].institutions[0].ror | https://ror.org/02drdmm93 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I200296433 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Chinese Academy of Medical Sciences & Peking Union Medical College |
| authorships[7].institutions[1].id | https://openalex.org/I2801228662 |
| authorships[7].institutions[1].ror | https://ror.org/04jztag35 |
| authorships[7].institutions[1].type | healthcare |
| authorships[7].institutions[1].lineage | https://openalex.org/I2801228662 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | Peking Union Medical College Hospital |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | JIN Zhengyu |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doaj.org/article/b747ba19bf464533bbd8a734a4797f4c |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | The Value of Model Based on Radiomics Features of T2-weighted Imaging and Clinical Feature in Diagnosing the Depth of Stromal Invasion of Cervical Squamous Cell Carcinoma |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2049214470, https://openalex.org/W2902148150, https://openalex.org/W2528949658, https://openalex.org/W3089170113, https://openalex.org/W2112392530, https://openalex.org/W4256287354, https://openalex.org/W2529664115, https://openalex.org/W4237430607, https://openalex.org/W2084177708, https://openalex.org/W2092701849 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:doaj.org/article:b747ba19bf464533bbd8a734a4797f4c |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401280 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Xiehe Yixue Zazhi, Vol 12, Iss 5, Pp 705-712 (2021) |
| best_oa_location.landing_page_url | https://doaj.org/article/b747ba19bf464533bbd8a734a4797f4c |
| primary_location.id | pmh:oai:doaj.org/article:b747ba19bf464533bbd8a734a4797f4c |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401280 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Xiehe Yixue Zazhi, Vol 12, Iss 5, Pp 705-712 (2021) |
| primary_location.landing_page_url | https://doaj.org/article/b747ba19bf464533bbd8a734a4797f4c |
| publication_date | 2021-09-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 144 |
| abstract_inverted_index.a | 7, 96, 99, 103, 297 |
| abstract_inverted_index.72 | 183 |
| abstract_inverted_index.96 | 192 |
| abstract_inverted_index.In | 225 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.as | 296 |
| abstract_inverted_index.be | 294 |
| abstract_inverted_index.by | 117, 132 |
| abstract_inverted_index.in | 25, 45, 109, 139, 164, 181, 308 |
| abstract_inverted_index.of | 6, 75, 85, 93, 127, 146, 206, 243, 266, 305 |
| abstract_inverted_index.on | 11, 121, 286 |
| abstract_inverted_index.to | 54, 222, 301 |
| abstract_inverted_index.168 | 147 |
| abstract_inverted_index.CI: | 246, 253, 260, 272, 275, 279 |
| abstract_inverted_index.DSI | 108 |
| abstract_inverted_index.T2- | 12 |
| abstract_inverted_index.The | 77, 125 |
| abstract_inverted_index.and | 16, 60, 67, 81, 102, 159, 176, 191, 199, 208, 211, 220, 255, 264, 277 |
| abstract_inverted_index.can | 293 |
| abstract_inverted_index.for | 19, 106 |
| abstract_inverted_index.had | 185, 194 |
| abstract_inverted_index.key | 94 |
| abstract_inverted_index.met | 156 |
| abstract_inverted_index.set | 66, 70, 174, 179 |
| abstract_inverted_index.the | 3, 64, 68, 72, 73, 82, 122, 133, 140, 157, 172, 177, 226, 229, 237, 240, 249, 256, 267, 303 |
| abstract_inverted_index.was | 130 |
| abstract_inverted_index.(95% | 245 |
| abstract_inverted_index.2017 | 53 |
| abstract_inverted_index.2021 | 56 |
| abstract_inverted_index.DSI. | 195 |
| abstract_inverted_index.Four | 196 |
| abstract_inverted_index.T2WI | 87, 287 |
| abstract_inverted_index.They | 167 |
| abstract_inverted_index.area | 238 |
| abstract_inverted_index.cell | 31, 39, 113, 153, 214, 312 |
| abstract_inverted_index.deep | 21 |
| abstract_inverted_index.from | 51 |
| abstract_inverted_index.into | 63, 171 |
| abstract_inverted_index.set, | 228 |
| abstract_inverted_index.set. | 124, 142 |
| abstract_inverted_index.than | 248 |
| abstract_inverted_index.that | 41, 155 |
| abstract_inverted_index.this | 165 |
| abstract_inverted_index.used | 221, 295 |
| abstract_inverted_index.were | 57, 89, 115, 162, 168, 218, 270 |
| abstract_inverted_index.with | 27, 35, 71, 149, 236, 290 |
| abstract_inverted_index.(AUC) | 242 |
| abstract_inverted_index.(DSI) | 24 |
| abstract_inverted_index.(ROC) | 137 |
| abstract_inverted_index.(age, | 203 |
| abstract_inverted_index.0.820 | 244 |
| abstract_inverted_index.After | 91 |
| abstract_inverted_index.Union | 47 |
| abstract_inverted_index.based | 10, 120, 285 |
| abstract_inverted_index.cases | 184, 193 |
| abstract_inverted_index.curve | 138, 241 |
| abstract_inverted_index.depth | 304 |
| abstract_inverted_index.model | 9, 105, 231, 269 |
| abstract_inverted_index.ratio | 74 |
| abstract_inverted_index.three | 200 |
| abstract_inverted_index.total | 145 |
| abstract_inverted_index.under | 239 |
| abstract_inverted_index.value | 5 |
| abstract_inverted_index.which | 182 |
| abstract_inverted_index.(T2WI) | 15 |
| abstract_inverted_index.8∶2. | 76 |
| abstract_inverted_index.Peking | 46 |
| abstract_inverted_index.better | 233 |
| abstract_inverted_index.images | 88, 288 |
| abstract_inverted_index.method | 300 |
| abstract_inverted_index.model, | 98, 101 |
| abstract_inverted_index.models | 129 |
| abstract_inverted_index.showed | 232 |
| abstract_inverted_index.stage, | 210 |
| abstract_inverted_index.study. | 166 |
| abstract_inverted_index.(n=135) | 175 |
| abstract_inverted_index.(n=33), | 180 |
| abstract_inverted_index.College | 49 |
| abstract_inverted_index.January | 52 |
| abstract_inverted_index.Medical | 48 |
| abstract_inverted_index.Methods | 33 |
| abstract_inverted_index.Results | 143 |
| abstract_inverted_index.antigen | 216 |
| abstract_inverted_index.develop | 223 |
| abstract_inverted_index.divided | 62, 170 |
| abstract_inverted_index.imaging | 14 |
| abstract_inverted_index.levels) | 217 |
| abstract_inverted_index.models. | 224 |
| abstract_inverted_index.radical | 43 |
| abstract_inverted_index.stromal | 22, 189, 306 |
| abstract_inverted_index.February | 55 |
| abstract_inverted_index.Hospital | 50 |
| abstract_inverted_index.Logistic | 118 |
| abstract_inverted_index.Patients | 34 |
| abstract_inverted_index.accuracy | 265 |
| abstract_inverted_index.cervical | 29, 37, 111, 151, 310 |
| abstract_inverted_index.clinical | 17, 79, 100, 201, 250, 291 |
| abstract_inverted_index.combined | 289 |
| abstract_inverted_index.compared | 131 |
| abstract_inverted_index.criteria | 161 |
| abstract_inverted_index.features | 18, 80, 84, 198, 284, 292 |
| abstract_inverted_index.included | 59, 163 |
| abstract_inverted_index.invasion | 23, 190, 307 |
| abstract_inverted_index.patients | 26, 148 |
| abstract_inverted_index.randomly | 61, 169 |
| abstract_inverted_index.receiver | 134 |
| abstract_inverted_index.sagittal | 86 |
| abstract_inverted_index.selected | 219 |
| abstract_inverted_index.squamous | 30, 38, 112, 152, 213, 311 |
| abstract_inverted_index.training | 65, 123, 173 |
| abstract_inverted_index.weighted | 13 |
| abstract_inverted_index.0.793(95% | 259 |
| abstract_inverted_index.0.797(95% | 252 |
| abstract_inverted_index.73.7%(95% | 274 |
| abstract_inverted_index.78.8%(95% | 278 |
| abstract_inverted_index.85.7%(95% | 271 |
| abstract_inverted_index.Objective | 0 |
| abstract_inverted_index.Radiomics | 283 |
| abstract_inverted_index.carcinoma | 40, 114, 154, 215 |
| abstract_inverted_index.confirmed | 187 |
| abstract_inverted_index.determine | 302 |
| abstract_inverted_index.developed | 116 |
| abstract_inverted_index.different | 128 |
| abstract_inverted_index.exclusion | 160 |
| abstract_inverted_index.features, | 95 |
| abstract_inverted_index.inclusion | 158 |
| abstract_inverted_index.obtained. | 90 |
| abstract_inverted_index.operating | 135 |
| abstract_inverted_index.radiomics | 83, 97, 197, 257 |
| abstract_inverted_index.selection | 92 |
| abstract_inverted_index.underwent | 42 |
| abstract_inverted_index.Conclusion | 282 |
| abstract_inverted_index.Federation | 204 |
| abstract_inverted_index.Gynecology | 207 |
| abstract_inverted_index.Obstetrics | 209 |
| abstract_inverted_index.carcinoma. | 32, 313 |
| abstract_inverted_index.diagnosing | 20, 107 |
| abstract_inverted_index.diagnostic | 234 |
| abstract_inverted_index.model[AUC: | 251, 258 |
| abstract_inverted_index.parameters | 202 |
| abstract_inverted_index.prediction | 4 |
| abstract_inverted_index.regression | 119 |
| abstract_inverted_index.validation | 69, 141, 178, 227 |
| abstract_inverted_index.early-stage | 28, 36, 110, 150, 309 |
| abstract_inverted_index.investigate | 2 |
| abstract_inverted_index.noninvasive | 298 |
| abstract_inverted_index.performance | 126, 235 |
| abstract_inverted_index.superficial | 188 |
| abstract_inverted_index.0.665-0.974) | 247 |
| abstract_inverted_index.49.8%-100%), | 273 |
| abstract_inverted_index.57.9%-100%), | 276 |
| abstract_inverted_index.hysterectomy | 44 |
| abstract_inverted_index.preoperative | 78, 212, 299 |
| abstract_inverted_index.sensitivity, | 262 |
| abstract_inverted_index.specificity, | 263 |
| abstract_inverted_index.0.623-0.971)] | 254 |
| abstract_inverted_index.69.7%-93.9%), | 280 |
| abstract_inverted_index.International | 205 |
| abstract_inverted_index.respectively. | 281 |
| abstract_inverted_index.characteristic | 136 |
| abstract_inverted_index.retrospectively | 58 |
| abstract_inverted_index.0.633-0.954)].The | 261 |
| abstract_inverted_index.clinical-radiomics | 8, 104, 230, 268 |
| abstract_inverted_index.histopathologically | 186 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.25853604 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |