Theory‐Driven Perspectives on Generative Artificial Intelligence in Business and Management Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1111/1467-8551.12788
Shuang Ren, Riikka M. Sarala, Paul Hibbert The advent of generative artificial intelligence (GAI) has sparked both enthusiasm and anxiety as different stakeholders grapple with the potential to reshape the business and management landscape. This dynamic discourse extends beyond GAI itself to encompass closely related innovations that have existed for some time, for example, machine learning, thereby creating a collective anticipation of opportunities and dilemmas surrounding the transformative or disruptive capacities of these emerging technologies. Recently, ChatGPT's ability to access information from the web in real time marks a significant advancement with profound implications for businesses. This feature is argued to enhance the model's capacity to provide up-to-date, contextually relevant information, enabling more dynamic customer interactions. For businesses, this could mean improvements in areas like market analysis, trend tracking, customer service and real-time data-driven problem-solving. However, this also raises concerns about the accuracy and reliability of the information sourced, given the dynamic and sometimes unverified nature of web content. Additionally, real-time web access might complicate data privacy and security, as the boundaries of GAI interactions extend into the vast and diverse Internet landscape. These factors necessitate a careful and responsible approach to evaluating and using advanced GAI capabilities in business and management contexts. GAI is attracting much interest both in the academic and business practitioner literature. A quick search in Google Scholar, using the search terms 'generative artificial intelligence' and 'business' or 'management', yields approximately 1740 results. Within this extensive repository, scholars delve into diverse facets, exploring GAI's potential applications across various business and management functions, contemplating its implications for management educators and scrutinizing specific technological applications. Learned societies such as the British Academy of Management have also joined forces in leading the discussion on AI and digitalization in business and management academe. Meanwhile, practitioners and consultants alike (e.g. McKinsey & Company, PWC, World Economic Forum) have produced dedicated discussions, reports and forums to offer insights into the multifaceted impacts and considerations surrounding the integration of GAI in contemporary business and management practices. Table 1 illustrates some current applications of GAI as documented in the practitioner literature. Zalando [online platform for fashion and lifestyle] Instacart [e-commerce application] Salesforce [cloud-based customer relationship software provider] DHL [logistics provider] Coca-Cola [beverage company] Nestlé and Mondelez [confectionary] Heinz [food processing company] Air India [airline] Duolingo [language learning application] Mastercard [financial services] In an attempt to capture the new opportunities and challenges brought about by this technology and to hopefully find a way forward to guide research and practice, management journals have been swift to embrace the trend, introducing special issues on GAI. These issues aim to promote intellectual debate, for instance in relation to specific business disciplines (e.g. Benbya, Pachidi and Jarvenpaa, 2021) or organizational possibilities and pitfalls (Chalmers et al., 2023). However, amidst these commendable efforts that reflect a broad spectrum of perspectives, a critical examination of the burgeoning hype around GAI reveals a significant gap. Despite the proliferation of discussions from scholars, practitioners and the general public, the prevailing discourse is often speculative, lacking a robust theoretical foundation. This deficiency points to the challenges to existing theories in terms of their efficacy in explaining the unique demands created by GAI and indicates an urgent need for refining prior theories or even redeveloping new theories. There is a pressing need to move beyond the current wave of hype and explore the theoretical underpinnings of GAI and the dynamics of its potential impact, to ensure a more nuanced and informed discussion that can guide future research and application in this rapidly evolving area. In this direction, the British Journal of Management (BJM) invited prominent scholars who serve as editors in leading business and management journals to weigh in and contribute with their diverse theoretical knowledge to this symposium paper on the emerging GAI phenomenon. This collaborative effort aims to advance the theorization of business and management research in relation to the intricacies associated with the impact of GAI by engaging in intensive discussions on how theoretical attempts can be made to make sense of the myths and truths around GAI. The quest for theory, either seeking or refining, is a long-standing tradition in business and management research (e.g. Colquitt and Zapata-Phelan, 2007). While the seven pieces below place different elements under the spotlight of theoretical scrutiny, one common thread is the need to reconceptualize the relational realm of workplaces. The introduction of GAI in the workplace refines the norm of working together as a person-to-person group to working in a human–GAI group, with the latter illustrating three novel conceptual contributions in comparison to traditional understandings of the dynamics in the workplace. In the realm of the GAI-laden workplace, it is imperative to shift our perspective from a deterministic outlook to one that manages emergence. Quattrone, Zilber and Meyer encapsulate the emergent nature of GAI-related phenomena by pointing out that 'the future is not out there'. Rather than attempting to predict the future, they advocate the making of the future through creativity and reflection. Equally, they posit that GAI should be viewed as a construction whose functions and effects are not predetermined but shaped by people's decisions and utilization. The etymological lens they bring encourages a rethinking of the impacts of GAI ontologically. The recognition of our inability to know what the future is points to a relational approach to creating it, centred upon relations between the current and future generations in specific ways, and between people within generations, objects and locations more broadly. Relationality thus establishes the context for sense-making, where the workings and outcomes unfold as emergent phenomena, in the GAI-laden workplace. MacKenzie, Decker and Lubinski illuminate the importance of contextual understanding when examining the impact of GAI on the workplace, advocating an approach where 'context matters'. The context they propose is an expansive concept that can encompass the analysis of past imaginaries of existing technologies, an examination of technologies currently in question along with other technologies, as well as the incorporation of institutional forces over time (e.g. economic, political systems). In essence, the call to recognize that 'context matters' should serve as a guiding principle to move beyond idiosyncratic, isolated examinations of GAI and place it within the intricacies of contextual relationships that contribute to its emergence and future development. Brown, Ellis and Gore ask a critical question of how we should redefine 'team' if GAI integrates into our daily work. As the conventional definitions of team comprise individuals, the extent to which AI can be considered as a team member becomes pivotal. As much as GAI technologies may seem human-like (including robotic 'human'), GAI does not yet possess feelings, desires, intentions and responsibility in the same way as human beings. In the context of a human–GAI team, Davison and Ravishankar provide their first-hand experience of using GAI in their research, specifically for tasks such as literature review, transcribing and analysing data. They caution against the mere reliance on GAI in generating original research. Nonetheless, they conclude by highlighting the potential of leveraging effective 'prompts' to maximize the capabilities of GAI, leaving readers with valuable food for thought. Munzio and Faulconbridge take the concept of human–GAI relationships forward by focusing on the producer–consumer relationships that shape professionalism. They highlight a range of new research questions in which the human–GAI group will challenge established constructs both theoretically and empirically. In addition, Islam and Greenwood contribute to debates about the nature (or absence) of responsibility in the use of GAI as human–GAI interactions unfold. They take a relational perspective to knowledge production in which the use of GAI-based large language models challenges the production of knowledge and the nature of accountability. These issues are perhaps more profound as the interactions between humans and GAI can be either coordinated or uncoordinated. In sum, BJM is committed to fostering a deeper understanding and stimulating debate around GAI and its profound impact on business and management studies. The diverse contributions in this symposium collection do not seek to offer definitive solutions; instead, they serve as an invaluable starting point on a journey of exploration and discovery in the field. The insights offered here extend beyond the conventional boundaries, challenging and enriching existing management theories with fresh perspectives stimulated by the phenomenon of GAI. These discussions are pivotal in developing, extending, adapting and evolving theoretical frameworks to remain relevant in a business landscape that could become GAI-driven. The discussions also extend to the ethical and societal considerations of GAI in management, emphasizing responsible and sustainable business and management practices. By bridging theory and practice, BJM aims to provide managers and practitioners with insights and tools to navigate the complexities of integrating GAI into their strategies and operations, where appropriate, in a sustainable and responsible manner. In essence, with this symposium, BJM aims to contribute to a collective body of knowledge that not only seeks to understand and explain GAI but also to shape the future of GAI in work, employment, business, governance and society towards sustainable and responsible directions. Paolo Quattrone, Tammar Zilber, Renate Meyer The etymology of words is often a source of insights to not only make sense of their meaning, but also speculate and imagine meanings that are not so obvious and thereby see the phenomena signalled by these words in new and surprising ways. The etymology of 'artificial' and 'intelligence' does not disappoint. 'Artificial' comes from 'art' and -fex 'maker', from facere 'to do, make'. 'Intelligence' comes from inter 'between' and legere 'choose, pick out, read' but also 'collect, gather'. There is enough in these etymologies to offer a few speculations and imagine the contours of generative artificial intelligence (GAI) and its possible futures. The first of these is inspired by the craft of making and relates to the very function and use of AI. Most of the current fascinations with AI emphasize the predictive capacity of the various tools increasingly available and at easy disposal. Indeed, marketers know well in advance when we will need the next toothbrush, fuel our cars, buy new clothes, and so forth. The list is long. This feature of AI enchants us when, for instance, one thinks of a product and, invariably, an advertisement related to that product appears on our social media page. This quasi-magical predictive ability captures collective imaginations and draws upon very well-ingrained forms of knowledge production which presuppose that data techniques are there to represent the world, paradoxically, even when it is not there, as is the case with predictions. The issue is that the future is not out there; we do not know what future generations want from us and still, we are increasingly called to respond to their demands. Despite the availability of huge amounts of data points and intelligence, the future, even if proximal and mundane – as our examples above, always holds surprises. This means that AI may be useful not to predict the future, but to actually imagine and make it, as the -fex in 'artificial' reveals. This is the art in the 'artificial' and points to the possibility of conceiving AI as a compositional art, which helps us to create images of the future, sparks imagination and creativity and, hopefully, offers a space for speculation and reflection. The word intelligence is our second cue, which stresses how 'inter' means to be and explore what is 'in between'. As entrepreneurs are in between different ventures and explore what is not yet there (Hjorth and Holt, 2022), AI may be useful to probe grey areas between statuses and courses of action. It can be used to create scenarios, to make sure that the very same set of data produces alternative options that leave space for juggling among different decision-making criteria without reducing decisions about complex states of affairs to single criteria, most likely, value rather than values. This is how, for instance, one could wisely refrain from both apocalyptic and salvific scenarios that characterize the debate about AI. On the one hand, AI is seen as one of the worst possible menaces to humankind. It will take control of our minds and direct our habits, making us entirely dependent. Very likely, as the Luddites were proven wrong (but not completely) when looking at the first and second Industrial Revolutions, the pessimist views will prove wrong, but not completely, as it is clear that AI has agency (Latour, 1987) in informing our judgement and it does so through various forms of multimodal affects, that is, relying on our vast repertoire of senses, all mobilized by new forms of technology (e.g. think of smartwatches and how they influence our training habits). On the other hand, AI – similar to the first enterprise resource planning (ERP) systems – is seen as a panacea for many of our problems, diseases and grand challenges, from poverty to climate change, at least until one realizes that SAP does not stand for 'Solves All Problems' (Quattrone and Hopper, 2006). These dystopian and utopian attitudes will soon be debunked and leave room for more balanced views, which will acknowledge that AI is both a means to address wicked problems and a wicked problem itself, and, again, realize that wisdom is always to be found in the middle, the very same middle in between views. In this case, a more balanced in-between view is to realize that AI itself is a construction. Like all resources (Feldman and Worline, 2006) and technologies (Orlikowski, 2000), their function and effect are not pre-given but will be determined by our use thereof. For example, AI will be productive of 'facts' but of those that are reminiscent of the fact that facts are 'made', and that there is nothing less factual than a fact for, as the Romans knew so well (from factum, i.e. made), a fact is always constructed, and AI will be making them in huge quantities. This will be good to speculate, to foster imagination by having a huge amount of them available, but also potentially bad, as those who will own the ability to establish them as facts will magnify Foucault's adage that knowledge is power. The third cue stands in the root leg-, which originates so many words that characterize our contemporary world, both academic and not, including legere (to read, but also to pick and choose), legare (to knot) and indeed a religion. As much as medieval classifying techniques used inventories of data to invent new solutions to old problems by recombining such data in novel forms, by choosing and picking data depending on the purpose of the calculation, to imagine the future and reimagine the past (Carruthers, 1998), AI will use even bigger inventories of data to generate inventions until we finally realize that to explore 'what is not' and could become is much more fruitful in imagining the future and the unprecedented than to define 'what is' (Quattrone, 2017). Only then will AI be truly generative. As was the case with Steve Ballmer, then CEO of Microsoft, when presented with the first iPhone. He exclaimed 'who would want to pay five hundred dollars for a phone?'. He had not realized that to comprehend the power and complexities of technologies, it is better to think in terms of what they are not, rather than what they are. The cell phone is not a phone so much as it is a camera, a TV or cinema, a newspaper, a journal/calendar. Google begins a search with X, a negative, and then by creating correlations defines what Z could be (a phone may be a cinema) and what it could become (a meeting place). This move from the negative to the potential, from what is not to what can be, is the core of AI. AI can facilitate this exploration into what is not obvious and help us avoid for how AI will and our is to as there are so many this can and many this it may be more fruitful not to predict the future but to explore how we to make sense of the future in the and which potential we thereby and which we the around the and the various they attempt to serve may us more about than about AI – about our collective and that shape our and This us to and to what extent AI can human and technologies influence our is for but given that this influence is not and technologies have that beyond the intentions of the what as agency and where to find it is a that GAI can contribute to the of the and the debate between and the of has been along with and accountability. This is even when of various take decisions from in to in and also to that potentially not only research but also the where these are that is, academic journals 2023). are from a be it a or a exploring to with the that they have responsibility and accountability. yet they influence the and our social and This has and theoretical In as much as the of the to and and 2022), we may the emergence of a new this time even more than the with and and value and governance is even more than with as these are even more and not to we may be at the of a as as the emergence of theory in the It was who the need for a of the that is, a the of which was the of the production of of various of the need for making sense of the relationship between means and when new forms of informed would not be if a of the this time related to the of AI in the For there will be a need to AI and how the governance and of AI with human the contours of MacKenzie, Lubinski Recently, generative artificial intelligence (GAI) has been to by and with of (or depending on and as we know it with of et al., of point out that this is nothing and have a and and the same is for to these innovations and if does have to us about GAI from a theoretical perspective other than not a between past and and 2017). if we want to understand GAI we should understand the of its and the context in which it and GAI's by in other areas including information technology and and many MacKenzie, and and This means that GAI's it is the of across various other which and within this is the by and about what it could mean for The value of with to new technologies like GAI can be by the social imaginaries that have been as of the experience of technologies and their and a technology there may be a about how it will our for the concerns about how it will societal 2023). technologies like GAI are then often to – of new where existing of are better and and societal but are also often by challenges and concerns societal and the of As a the imaginaries with other and are generative in and of in that they create of possibility that of and can past imaginaries of existing technologies to better understand what the emergence of new technologies and the with them us about how societies and to the they However, it is only in a fashion that we can understand the efficacy of such For example, by business has considered how we understand past of entrepreneurs across a range of technological and et al., illustrating the value that to societal brought about by such The good and bad, associated with technologies like GAI an in their and as well as their the nature of such technologies, it is to also recognize and the context in which new technologies such as GAI in terms of the associated with the societal effect they have and how they unfold in to provide theories and conceptual to better understand exploring the integration of new technologies in analysis of both the technology in question and other technologies illustrates and insights to deeper theory to understand what a technology like GAI can mean to The different imaginaries associated with GAI possess clear with what has in the The of the to that was their are the most negative societal to the introduction of new to the that is used to to the in of under that all all that with and be by a at by that technology and will traditional and make possible a new and at the of the that technology and can bring in people's time to on more and and the Luddites were about the that their and way of were under from and imaginaries are a of the of all new technologies but are only and within As out, on analysis of the emergence of use in in the technology itself does not bring the general societal if the in which it is by of 2023). concerns have been made about GAI with its a few as well as such as the for in the technology 2023). The and political systems in which GAI is are to understand in relation to the imaginaries and made its value and of its in of the of technological As scholars, we challenges to explain technologies and the imaginaries often with of In this when we seek to about GAI and its potential impact on business and management it is to recognize that analysis does not the future, but rather a critical understanding of how new innovations impact and are by the societies they take place the imaginaries through the incorporation of in our of new technologies such as GAI will provide a deeper understanding of their impact, which in will us to better them for the Brown, Gore technologies to across not least the way in which they and to and 2017). For instance, innovations in have to a shift towards working and the proliferation of et al., As the and of data that can be together has also we have the emergence of large language models with the introduction of them to the of a much to as a of generative artificial intelligence (or to ask questions and be with to as as of customer service and information these can become team The view of technology as a means with which to facilitate effective in has towards questions of and under what we can this GAI as a GAI in this a trend from technology as a that is to human decision-making for a discussion of this in instead, having a direct and within the decision-making and in et al., questions are as to AI team the of a team, and would if how what are AI team or for real team when it comes to a AI team a who responsibility for and can or should managers or these questions that it may soon be to and the way in which are from and ethical a theoretical across the many definitions of that have been within
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/1467-8551.12788
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1467-8551.12788
- OA Status
- hybrid
- Cited By
- 55
- References
- 100
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391042079
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391042079Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/1467-8551.12788Digital Object Identifier
- Title
-
Theory‐Driven Perspectives on Generative Artificial Intelligence in Business and ManagementWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Olivia Brown, Robert M. Davison, Stephanie Decker, David A. Ellis, James Faulconbridge, Julie Gore, Michelle Greenwood, Gazi Islam, Christina Lubinski, Niall MacKenzie, Renate E. Meyer, Daniel Muzio, Paolo Quattrone, M. N. Ravishankar, Tammar B. Zilber, Shuang Ren, Riikka M. Sarala, Paul HibbertList of authors in order
- Landing page
-
https://doi.org/10.1111/1467-8551.12788Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1467-8551.12788Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1467-8551.12788Direct OA link when available
- Concepts
-
Anticipation (artificial intelligence), Business intelligence, Computer science, Generative grammar, Knowledge management, Sociology, Data science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
55Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 43, 2024: 12Per-year citation counts (last 5 years)
- References (count)
-
100Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391042079 |
|---|---|
| doi | https://doi.org/10.1111/1467-8551.12788 |
| ids.doi | https://doi.org/10.1111/1467-8551.12788 |
| ids.openalex | https://openalex.org/W4391042079 |
| fwci | 52.08751168 |
| type | article |
| title | Theory‐Driven Perspectives on Generative Artificial Intelligence in Business and Management |
| biblio.issue | 1 |
| biblio.volume | 35 |
| biblio.last_page | 23 |
| biblio.first_page | 3 |
| topics[0].id | https://openalex.org/T11891 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9897000193595886 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Big Data and Business Intelligence |
| topics[1].id | https://openalex.org/T14350 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9722999930381775 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Innovation, Sustainability, Human-Machine Systems |
| topics[2].id | https://openalex.org/T10003 |
| topics[2].field.id | https://openalex.org/fields/14 |
| topics[2].field.display_name | Business, Management and Accounting |
| topics[2].score | 0.949400007724762 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1408 |
| topics[2].subfield.display_name | Strategy and Management |
| topics[2].display_name | Innovation and Knowledge Management |
| is_xpac | False |
| apc_list.value | 3710 |
| apc_list.currency | USD |
| apc_list.value_usd | 3710 |
| apc_paid.value | 3710 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3710 |
| concepts[0].id | https://openalex.org/C176777502 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5864298343658447 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q4774623 |
| concepts[0].display_name | Anticipation (artificial intelligence) |
| concepts[1].id | https://openalex.org/C2767350 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4715825617313385 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6662173 |
| concepts[1].display_name | Business intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.46841397881507874 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C39890363 |
| concepts[3].level | 2 |
| concepts[3].score | 0.44427749514579773 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[3].display_name | Generative grammar |
| concepts[4].id | https://openalex.org/C56739046 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3998761773109436 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[4].display_name | Knowledge management |
| concepts[5].id | https://openalex.org/C144024400 |
| concepts[5].level | 0 |
| concepts[5].score | 0.345763623714447 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[5].display_name | Sociology |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3260461091995239 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.24008771777153015 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/anticipation |
| keywords[0].score | 0.5864298343658447 |
| keywords[0].display_name | Anticipation (artificial intelligence) |
| keywords[1].id | https://openalex.org/keywords/business-intelligence |
| keywords[1].score | 0.4715825617313385 |
| keywords[1].display_name | Business intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.46841397881507874 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/generative-grammar |
| keywords[3].score | 0.44427749514579773 |
| keywords[3].display_name | Generative grammar |
| keywords[4].id | https://openalex.org/keywords/knowledge-management |
| keywords[4].score | 0.3998761773109436 |
| keywords[4].display_name | Knowledge management |
| keywords[5].id | https://openalex.org/keywords/sociology |
| keywords[5].score | 0.345763623714447 |
| keywords[5].display_name | Sociology |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.3260461091995239 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.24008771777153015 |
| keywords[7].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1111/1467-8551.12788 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S184126201 |
| locations[0].source.issn | 1045-3172, 1467-8551 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1045-3172 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | British Journal of Management |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1467-8551.12788 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | British Journal of Management |
| locations[0].landing_page_url | https://doi.org/10.1111/1467-8551.12788 |
| locations[1].id | pmh:oai:eprints.gla.ac.uk:312922 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400411 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Enlighten: Publications (The University of Glasgow) |
| locations[1].source.host_organization | https://openalex.org/I7882870 |
| locations[1].source.host_organization_name | University of Glasgow |
| locations[1].source.host_organization_lineage | https://openalex.org/I7882870 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Articles |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:pure.atira.dk:openaire_cris_publications/9ab2a144-c9b7-4722-ae05-e502acfa0765 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400216 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Research Portal (King's College London) |
| locations[2].source.host_organization | https://openalex.org/I183935753 |
| locations[2].source.host_organization_name | King's College London |
| locations[2].source.host_organization_lineage | https://openalex.org/I183935753 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Brown , O , Davison , R M , Decker , S , Ellis , D A , Faulconbridge , J , Gore , J , Greenwood , M , Islam , G , Lubinski , C , MacKenzie , N , Meyer , R , Muzio , D , Quattrone , P , Ravishankar , M N , Zilber , T , Ren , S , Sarala , R M & Hibbert , P 2024 , ' Theory-Driven Perspectives on Generative Artificial Intelligence in Business and Management ' , British Journal of Management , vol. 35 , no. 1 , pp. 3-23 . https://doi.org/10.1111/1467-8551.12788 |
| locations[2].landing_page_url | https://research.birmingham.ac.uk/en/publications/9ab2a144-c9b7-4722-ae05-e502acfa0765 |
| locations[3].id | pmh:oai:research-repository.st-andrews.ac.uk:10023/30452 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400230 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | St Andrews Research Repository (St Andrews Research Repository) |
| locations[3].source.host_organization | https://openalex.org/I16835326 |
| locations[3].source.host_organization_name | University of St Andrews |
| locations[3].source.host_organization_lineage | https://openalex.org/I16835326 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Journal article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://hdl.handle.net/10023/30452 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5021196861 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6403-0271 |
| authorships[0].author.display_name | Olivia Brown |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I51601045 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Bath, UK |
| authorships[0].institutions[0].id | https://openalex.org/I51601045 |
| authorships[0].institutions[0].ror | https://ror.org/002h8g185 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I51601045 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Bath |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Olivia Brown |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Bath, UK |
| authorships[1].author.id | https://openalex.org/A5006120288 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7243-3521 |
| authorships[1].author.display_name | Robert M. Davison |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I168719708 |
| authorships[1].affiliations[0].raw_affiliation_string | City University of Hong Kong, Hong Kong |
| authorships[1].institutions[0].id | https://openalex.org/I168719708 |
| authorships[1].institutions[0].ror | https://ror.org/03q8dnn23 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I168719708 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | City University of Hong Kong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Robert M. Davison |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | City University of Hong Kong, Hong Kong |
| authorships[2].author.id | https://openalex.org/A5064172786 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0547-9594 |
| authorships[2].author.display_name | Stephanie Decker |
| authorships[2].countries | GB, SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79619799 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Birmingham, UK |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I881427289 |
| authorships[2].affiliations[1].raw_affiliation_string | University of Gothenburg, Sweden |
| authorships[2].institutions[0].id | https://openalex.org/I79619799 |
| authorships[2].institutions[0].ror | https://ror.org/03angcq70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79619799 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Birmingham |
| authorships[2].institutions[1].id | https://openalex.org/I881427289 |
| authorships[2].institutions[1].ror | https://ror.org/01tm6cn81 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I881427289 |
| authorships[2].institutions[1].country_code | SE |
| authorships[2].institutions[1].display_name | University of Gothenburg |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stephanie Decker |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Birmingham, UK, University of Gothenburg, Sweden |
| authorships[3].author.id | https://openalex.org/A5101548373 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6172-3323 |
| authorships[3].author.display_name | David A. Ellis |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I51601045 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Bath, UK |
| authorships[3].institutions[0].id | https://openalex.org/I51601045 |
| authorships[3].institutions[0].ror | https://ror.org/002h8g185 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I51601045 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Bath |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David A. Ellis |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Bath, UK |
| authorships[4].author.id | https://openalex.org/A5015766290 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1809-4271 |
| authorships[4].author.display_name | James Faulconbridge |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I67415387 |
| authorships[4].affiliations[0].raw_affiliation_string | Lancaster University, UK |
| authorships[4].institutions[0].id | https://openalex.org/I67415387 |
| authorships[4].institutions[0].ror | https://ror.org/04f2nsd36 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I67415387 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Lancaster University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | James Faulconbridge |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Lancaster University, UK |
| authorships[5].author.id | https://openalex.org/A5064780036 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1758-2871 |
| authorships[5].author.display_name | Julie Gore |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I98259816 |
| authorships[5].affiliations[0].raw_affiliation_string | Birkbeck, University of London, UK |
| authorships[5].institutions[0].id | https://openalex.org/I98259816 |
| authorships[5].institutions[0].ror | https://ror.org/02mb95055 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I98259816 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | Birkbeck, University of London |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Julie Gore |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Birkbeck, University of London, UK |
| authorships[6].author.id | https://openalex.org/A5041288959 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3086-6764 |
| authorships[6].author.display_name | Michelle Greenwood |
| authorships[6].countries | AU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I56590836 |
| authorships[6].affiliations[0].raw_affiliation_string | Monash University, Australia |
| authorships[6].institutions[0].id | https://openalex.org/I56590836 |
| authorships[6].institutions[0].ror | https://ror.org/02bfwt286 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I56590836 |
| authorships[6].institutions[0].country_code | AU |
| authorships[6].institutions[0].display_name | Monash University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Michelle Greenwood |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Monash University, Australia |
| authorships[7].author.id | https://openalex.org/A5004779886 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6503-6018 |
| authorships[7].author.display_name | Gazi Islam |
| authorships[7].countries | FR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I68666633 |
| authorships[7].affiliations[0].raw_affiliation_string | Grenoble Ecole de Management, France |
| authorships[7].affiliations[1].raw_affiliation_string | IREGE, France |
| authorships[7].institutions[0].id | https://openalex.org/I68666633 |
| authorships[7].institutions[0].ror | https://ror.org/01h4fxd96 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I68666633 |
| authorships[7].institutions[0].country_code | FR |
| authorships[7].institutions[0].display_name | Grenoble Ecole de Management |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Gazi Islam |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Grenoble Ecole de Management, France, IREGE, France |
| authorships[8].author.id | https://openalex.org/A5066173042 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9150-3284 |
| authorships[8].author.display_name | Christina Lubinski |
| authorships[8].countries | DK |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I180519160 |
| authorships[8].affiliations[0].raw_affiliation_string | Copenhagen Business School, Denmark |
| authorships[8].institutions[0].id | https://openalex.org/I180519160 |
| authorships[8].institutions[0].ror | https://ror.org/04sppb023 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I180519160 |
| authorships[8].institutions[0].country_code | DK |
| authorships[8].institutions[0].display_name | Copenhagen Business School |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Christina Lubinski |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Copenhagen Business School, Denmark |
| authorships[9].author.id | https://openalex.org/A5043223974 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3769-7086 |
| authorships[9].author.display_name | Niall MacKenzie |
| authorships[9].countries | GB |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I7882870 |
| authorships[9].affiliations[0].raw_affiliation_string | University of Glasgow, UK |
| authorships[9].institutions[0].id | https://openalex.org/I7882870 |
| authorships[9].institutions[0].ror | https://ror.org/00vtgdb53 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I7882870 |
| authorships[9].institutions[0].country_code | GB |
| authorships[9].institutions[0].display_name | University of Glasgow |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Niall G. MacKenzie |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | University of Glasgow, UK |
| authorships[10].author.id | https://openalex.org/A5041925910 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1033-5560 |
| authorships[10].author.display_name | Renate E. Meyer |
| authorships[10].countries | AT, DK |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I102248843 |
| authorships[10].affiliations[0].raw_affiliation_string | WU Vienna University of Economics, Austria |
| authorships[10].affiliations[1].institution_ids | https://openalex.org/I180519160 |
| authorships[10].affiliations[1].raw_affiliation_string | Copenhagen Business School, Denmark |
| authorships[10].institutions[0].id | https://openalex.org/I102248843 |
| authorships[10].institutions[0].ror | https://ror.org/03yn8s215 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I102248843 |
| authorships[10].institutions[0].country_code | AT |
| authorships[10].institutions[0].display_name | Vienna University of Economics and Business |
| authorships[10].institutions[1].id | https://openalex.org/I180519160 |
| authorships[10].institutions[1].ror | https://ror.org/04sppb023 |
| authorships[10].institutions[1].type | education |
| authorships[10].institutions[1].lineage | https://openalex.org/I180519160 |
| authorships[10].institutions[1].country_code | DK |
| authorships[10].institutions[1].display_name | Copenhagen Business School |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Renate Meyer |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Copenhagen Business School, Denmark, WU Vienna University of Economics, Austria |
| authorships[11].author.id | https://openalex.org/A5006322655 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-1725-9011 |
| authorships[11].author.display_name | Daniel Muzio |
| authorships[11].countries | GB |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I52099693 |
| authorships[11].affiliations[0].raw_affiliation_string | University of York, UK |
| authorships[11].institutions[0].id | https://openalex.org/I52099693 |
| authorships[11].institutions[0].ror | https://ror.org/04m01e293 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I52099693 |
| authorships[11].institutions[0].country_code | GB |
| authorships[11].institutions[0].display_name | University of York |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Daniel Muzio |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | University of York, UK |
| authorships[12].author.id | https://openalex.org/A5021082757 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-1914-8243 |
| authorships[12].author.display_name | Paolo Quattrone |
| authorships[12].countries | GB |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I28407311 |
| authorships[12].affiliations[0].raw_affiliation_string | Alliance Manchester Business School, The University of Manchester, UK |
| authorships[12].institutions[0].id | https://openalex.org/I28407311 |
| authorships[12].institutions[0].ror | https://ror.org/027m9bs27 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I28407311 |
| authorships[12].institutions[0].country_code | GB |
| authorships[12].institutions[0].display_name | University of Manchester |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Paolo Quattrone |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Alliance Manchester Business School, The University of Manchester, UK |
| authorships[13].author.id | https://openalex.org/A5089434092 |
| authorships[13].author.orcid | https://orcid.org/0000-0003-3826-9403 |
| authorships[13].author.display_name | M. N. Ravishankar |
| authorships[13].countries | GB |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I126231945 |
| authorships[13].affiliations[0].raw_affiliation_string | Queen's University Belfast, UK |
| authorships[13].institutions[0].id | https://openalex.org/I126231945 |
| authorships[13].institutions[0].ror | https://ror.org/00hswnk62 |
| authorships[13].institutions[0].type | education |
| authorships[13].institutions[0].lineage | https://openalex.org/I126231945 |
| authorships[13].institutions[0].country_code | GB |
| authorships[13].institutions[0].display_name | Queen's University Belfast |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | M. N. Ravishankar |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Queen's University Belfast, UK |
| authorships[14].author.id | https://openalex.org/A5067157527 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-6409-1269 |
| authorships[14].author.display_name | Tammar B. Zilber |
| authorships[14].countries | DK, IL |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I197251160 |
| authorships[14].affiliations[0].raw_affiliation_string | Hebrew University of Jerusalem, Israel |
| authorships[14].affiliations[1].institution_ids | https://openalex.org/I180519160 |
| authorships[14].affiliations[1].raw_affiliation_string | Copenhagen Business School, Denmark |
| authorships[14].institutions[0].id | https://openalex.org/I180519160 |
| authorships[14].institutions[0].ror | https://ror.org/04sppb023 |
| authorships[14].institutions[0].type | education |
| authorships[14].institutions[0].lineage | https://openalex.org/I180519160 |
| authorships[14].institutions[0].country_code | DK |
| authorships[14].institutions[0].display_name | Copenhagen Business School |
| authorships[14].institutions[1].id | https://openalex.org/I197251160 |
| authorships[14].institutions[1].ror | https://ror.org/03qxff017 |
| authorships[14].institutions[1].type | education |
| authorships[14].institutions[1].lineage | https://openalex.org/I197251160 |
| authorships[14].institutions[1].country_code | IL |
| authorships[14].institutions[1].display_name | Hebrew University of Jerusalem |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Tammar Zilber |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Copenhagen Business School, Denmark, Hebrew University of Jerusalem, Israel |
| authorships[15].author.id | https://openalex.org/A5084581187 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-8768-8447 |
| authorships[15].author.display_name | Shuang Ren |
| authorships[15].countries | GB |
| authorships[15].affiliations[0].institution_ids | https://openalex.org/I126231945 |
| authorships[15].affiliations[0].raw_affiliation_string | Queen's University Belfast, UK |
| authorships[15].institutions[0].id | https://openalex.org/I126231945 |
| authorships[15].institutions[0].ror | https://ror.org/00hswnk62 |
| authorships[15].institutions[0].type | education |
| authorships[15].institutions[0].lineage | https://openalex.org/I126231945 |
| authorships[15].institutions[0].country_code | GB |
| authorships[15].institutions[0].display_name | Queen's University Belfast |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Shuang Ren |
| authorships[15].is_corresponding | True |
| authorships[15].raw_affiliation_strings | Queen's University Belfast, UK |
| authorships[16].author.id | https://openalex.org/A5103218424 |
| authorships[16].author.orcid | https://orcid.org/0000-0003-0178-7127 |
| authorships[16].author.display_name | Riikka M. Sarala |
| authorships[16].countries | US |
| authorships[16].affiliations[0].institution_ids | https://openalex.org/I169335092 |
| authorships[16].affiliations[0].raw_affiliation_string | UNC Greensboro, USA |
| authorships[16].institutions[0].id | https://openalex.org/I169335092 |
| authorships[16].institutions[0].ror | https://ror.org/04fnxsj42 |
| authorships[16].institutions[0].type | education |
| authorships[16].institutions[0].lineage | https://openalex.org/I169335092 |
| authorships[16].institutions[0].country_code | US |
| authorships[16].institutions[0].display_name | University of North Carolina at Greensboro |
| authorships[16].author_position | middle |
| authorships[16].raw_author_name | Riikka M. Sarala |
| authorships[16].is_corresponding | False |
| authorships[16].raw_affiliation_strings | UNC Greensboro, USA |
| authorships[17].author.id | https://openalex.org/A5015367317 |
| authorships[17].author.orcid | https://orcid.org/0000-0002-2691-2556 |
| authorships[17].author.display_name | Paul Hibbert |
| authorships[17].countries | GB |
| authorships[17].affiliations[0].institution_ids | https://openalex.org/I39555362 |
| authorships[17].affiliations[0].raw_affiliation_string | University of Warwick, UK |
| authorships[17].institutions[0].id | https://openalex.org/I39555362 |
| authorships[17].institutions[0].ror | https://ror.org/01a77tt86 |
| authorships[17].institutions[0].type | education |
| authorships[17].institutions[0].lineage | https://openalex.org/I39555362 |
| authorships[17].institutions[0].country_code | GB |
| authorships[17].institutions[0].display_name | University of Warwick |
| authorships[17].author_position | last |
| authorships[17].raw_author_name | Paul Hibbert |
| authorships[17].is_corresponding | False |
| authorships[17].raw_affiliation_strings | University of Warwick, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1467-8551.12788 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Theory‐Driven Perspectives on Generative Artificial Intelligence in Business and Management |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11891 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9897000193595886 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Big Data and Business Intelligence |
| related_works | https://openalex.org/W4213201576, https://openalex.org/W2150761772, https://openalex.org/W4327648025, https://openalex.org/W4405308738, https://openalex.org/W4381664321, https://openalex.org/W2889392607, https://openalex.org/W4241504035, https://openalex.org/W2146681649, https://openalex.org/W2563093951, https://openalex.org/W4387541551 |
| cited_by_count | 55 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 43 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1111/1467-8551.12788 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S184126201 |
| best_oa_location.source.issn | 1045-3172, 1467-8551 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1045-3172 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | British Journal of Management |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1467-8551.12788 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | British Journal of Management |
| best_oa_location.landing_page_url | https://doi.org/10.1111/1467-8551.12788 |
| primary_location.id | doi:10.1111/1467-8551.12788 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S184126201 |
| primary_location.source.issn | 1045-3172, 1467-8551 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1045-3172 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | British Journal of Management |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1467-8551.12788 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | British Journal of Management |
| primary_location.landing_page_url | https://doi.org/10.1111/1467-8551.12788 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3143945924, https://openalex.org/W2165269254, https://openalex.org/W4387500714, https://openalex.org/W4212768240, https://openalex.org/W4206826461, https://openalex.org/W1996293917, https://openalex.org/W2613140486, https://openalex.org/W1686172298, https://openalex.org/W4239727386, https://openalex.org/W6639660195, https://openalex.org/W4383913712, https://openalex.org/W3043037022, https://openalex.org/W2967408956, https://openalex.org/W2963849010, https://openalex.org/W4246229490, https://openalex.org/W4378389894, https://openalex.org/W3038775985, https://openalex.org/W4321178424, https://openalex.org/W4240253639, https://openalex.org/W4301860741, https://openalex.org/W4256145159, https://openalex.org/W3172105420, https://openalex.org/W2601573656, https://openalex.org/W3027428178, https://openalex.org/W3152947245, https://openalex.org/W4283694131, https://openalex.org/W6763728165, https://openalex.org/W1858115704, https://openalex.org/W4360620450, https://openalex.org/W3166103365, https://openalex.org/W2140631583, https://openalex.org/W2138161798, https://openalex.org/W2148141559, https://openalex.org/W8755438, https://openalex.org/W3020874961, https://openalex.org/W2111859378, https://openalex.org/W3000018309, https://openalex.org/W4253787411, https://openalex.org/W2115534757, https://openalex.org/W3193997983, https://openalex.org/W3093840653, https://openalex.org/W2967916686, https://openalex.org/W4378627561, https://openalex.org/W2955853369, https://openalex.org/W4320486070, https://openalex.org/W4384120246, https://openalex.org/W4240671868, https://openalex.org/W3122498205, https://openalex.org/W3003257262, https://openalex.org/W640130091, https://openalex.org/W4378900904, https://openalex.org/W2795886109, https://openalex.org/W3133848105, https://openalex.org/W6631206129, https://openalex.org/W4240597658, https://openalex.org/W4315781214, https://openalex.org/W2360974766, https://openalex.org/W3124534315, https://openalex.org/W3023242059, https://openalex.org/W4322771200, https://openalex.org/W4383908630, https://openalex.org/W2907016001, https://openalex.org/W4285136700, https://openalex.org/W2159890500, https://openalex.org/W4296963432, https://openalex.org/W2113335106, https://openalex.org/W4388083989, https://openalex.org/W4282002326, https://openalex.org/W1751925517, https://openalex.org/W3157172840, https://openalex.org/W4250958956, https://openalex.org/W4253190820, https://openalex.org/W4240406603, https://openalex.org/W2002554683, https://openalex.org/W3186937019, https://openalex.org/W2589018508, https://openalex.org/W2008225701, https://openalex.org/W1583518685, https://openalex.org/W4234246774, https://openalex.org/W2770720714, https://openalex.org/W4230054408, https://openalex.org/W4381547091, https://openalex.org/W574599891, https://openalex.org/W2035257053, https://openalex.org/W4211028105, https://openalex.org/W2898432261, https://openalex.org/W2039026208, https://openalex.org/W1892629070, https://openalex.org/W2951648820, https://openalex.org/W2030998432, https://openalex.org/W2334930053, https://openalex.org/W4301762443, https://openalex.org/W2141020963, https://openalex.org/W2524616358, https://openalex.org/W1522334425, https://openalex.org/W1730594082, https://openalex.org/W3047563671, https://openalex.org/W3122439961, https://openalex.org/W2751624169, https://openalex.org/W1518101824 |
| referenced_works_count | 100 |
| abstract_inverted_index.& | 300 |
| abstract_inverted_index.1 | 334 |
| abstract_inverted_index.A | 216 |
| abstract_inverted_index.Z | 2567 |
| abstract_inverted_index.a | 58, 88, 186, 406, 465, 470, 480, 502, 544, 571, 685, 739, 745, 782, 838, 860, 881, 1010, 1043, 1076, 1113, 1197, 1242, 1293, 1333, 1382, 1442, 1457, 1503, 1584, 1680, 1834, 1853, 2108, 2165, 2172, 2199, 2211, 2268, 2281, 2306, 2373, 2498, 2535, 2542, 2544, 2548, 2550, 2554, 2558, 2574, 2787, 2889, 2894, 2898, 2969, 3029, 3053, 3060, 3104, 3129, 3220, 3263, 3275, 3432, 3438, 3518, 3590, 3620, 3760, 3885, 3907, 3975, 4061, 4188, 4227, 4287, 4342, 4350, 4403, 4430, 4441, 4448, 4461, 4470, 4503, 4537, 4542, 4589 |
| abstract_inverted_index.(a | 2570, 2581 |
| abstract_inverted_index.AI | 285, 1071, 1627, 1671, 1796, 1832, 1897, 1982, 2043, 2093, 2162, 2208, 2241, 2287, 2421, 2466, 2605, 2626, 2715, 2739, 3117, 3133, 3142, 4496, 4519, 4539 |
| abstract_inverted_index.As | 1059, 1081, 1879, 2375, 2470, 3517, 3995, 4125, 4305 |
| abstract_inverted_index.By | 1411 |
| abstract_inverted_index.He | 2487, 2500 |
| abstract_inverted_index.In | 387, 589, 767, 998, 1109, 1216, 1286, 1447, 2196, 2939, 4151 |
| abstract_inverted_index.It | 1911, 1994, 3043 |
| abstract_inverted_index.M. | 3 |
| abstract_inverted_index.On | 1978, 2089 |
| abstract_inverted_index.TV | 2545 |
| abstract_inverted_index.X, | 2557 |
| abstract_inverted_index.an | 388, 530, 949, 959, 973, 1328, 1684, 3658 |
| abstract_inverted_index.as | 20, 169, 270, 341, 603, 738, 837, 922, 984, 986, 1009, 1075, 1083, 1106, 1133, 1236, 1273, 1327, 1730, 1786, 1812, 1833, 1985, 2011, 2038, 2107, 2271, 2316, 2326, 2377, 2539, 2637, 2778, 2942, 2944, 3007, 3031, 3033, 3189, 3418, 3666, 3668, 3696, 4065, 4067, 4071, 4223, 4349, 4377, 4380, 4402, 4429, 4447, 4493 |
| abstract_inverted_index.at | 1639, 2022, 2124, 3025, 3888, 3919 |
| abstract_inverted_index.be | 664, 835, 1073, 1281, 1798, 1872, 1899, 1913, 2149, 2184, 2233, 2243, 2289, 2297, 2467, 2569, 2573, 2655, 2892, 3024, 3101, 3128, 3405, 3437, 3875, 4315, 4367, 4569 |
| abstract_inverted_index.by | 399, 526, 654, 801, 849, 1155, 1186, 1361, 1532, 1606, 2073, 2235, 2304, 2392, 2399, 2562, 3171, 3313, 3379, 3407, 3501, 3606, 3644, 3877, 3893, 4041, 4199 |
| abstract_inverted_index.do | 1317, 1747 |
| abstract_inverted_index.et | 455, 3201, 3628, 4302, 4484 |
| abstract_inverted_index.if | 1052, 1781, 3103, 3252, 3286, 4030, 4511 |
| abstract_inverted_index.in | 84, 122, 198, 209, 219, 280, 288, 327, 343, 437, 515, 520, 584, 605, 613, 643, 656, 688, 729, 744, 756, 764, 896, 925, 978, 1102, 1126, 1148, 1203, 1231, 1248, 1313, 1339, 1370, 1381, 1401, 1441, 1479, 1535, 1579, 1646, 1815, 1822, 1882, 2048, 2186, 2193, 2292, 2340, 2396, 2449, 2518, 2676, 2847, 2852, 3039, 3120, 3303, 3315, 3529, 3533, 3589, 3661, 3691, 3699, 3716, 3736, 3744, 3781, 3845, 3931, 4012, 4016, 4034, 4077, 4087, 4097, 4115, 4216, 4234, 4265, 4282, 4411, 4437, 4465, 4481, 4577 |
| abstract_inverted_index.is | 98, 204, 498, 543, 684, 715, 775, 807, 878, 958, 1289, 1501, 1577, 1604, 1666, 1727, 1731, 1738, 1742, 1819, 1862, 1876, 1889, 1958, 1983, 2040, 2105, 2163, 2181, 2204, 2210, 2263, 2283, 2334, 2440, 2445, 2514, 2533, 2541, 2594, 2600, 2612, 2633, 2751, 2761, 2785, 2830, 3000, 3212, 3233, 3353, 3372, 3587, 3681, 3828, 4037, 4090, 4173, 4452 |
| abstract_inverted_index.it | 774, 1023, 1726, 2039, 2053, 2513, 2540, 2578, 2653, 2784, 2893, 3192, 3305, 3352, 3387, 3442, 3454, 3586, 3680, 4036, 4172, 4532, 4566 |
| abstract_inverted_index.of | 9, 61, 71, 145, 156, 172, 274, 325, 339, 468, 473, 486, 517, 553, 560, 565, 595, 638, 652, 669, 709, 723, 727, 735, 761, 770, 798, 822, 862, 865, 870, 936, 943, 967, 970, 975, 989, 1019, 1027, 1046, 1063, 1112, 1123, 1159, 1167, 1182, 1199, 1229, 1234, 1252, 1260, 1265, 1335, 1364, 1399, 1431, 1460, 1477, 1499, 1505, 1512, 1542, 1591, 1602, 1609, 1619, 1622, 1632, 1670, 1679, 1709, 1770, 1773, 1830, 1843, 1909, 1926, 1946, 1987, 1998, 2059, 2069, 2076, 2080, 2112, 2245, 2248, 2253, 2309, 2383, 2408, 2427, 2479, 2511, 2520, 2603, 2672, 2773, 2799, 2814, 2836, 2948, 2968, 3028, 3036, 3055, 3064, 3069, 3072, 3074, 3077, 3083, 3093, 3107, 3116, 3141, 3151, 3178, 3197, 3206, 3297, 3357, 3394, 3420, 3423, 3475, 3482, 3513, 3531, 3538, 3543, 3554, 3563, 3599, 3617, 3622, 3675, 3701, 3733, 3740, 3787, 3818, 3851, 3922, 3962, 3978, 3981, 4005, 4008, 4044, 4111, 4117, 4120, 4147, 4191, 4213, 4219, 4230, 4295, 4310, 4326, 4334, 4341, 4352, 4382, 4400, 4418, 4463, 4502, 4596 |
| abstract_inverted_index.on | 284, 426, 625, 659, 945, 1146, 1188, 1305, 1332, 1691, 2065, 2405, 3184, 3938, 4002, 4165 |
| abstract_inverted_index.or | 68, 231, 449, 537, 682, 1284, 2546, 2897, 4525, 4553, 4556 |
| abstract_inverted_index.so | 1524, 1662, 2055, 2275, 2346, 2537, 2640 |
| abstract_inverted_index.to | 27, 41, 78, 100, 105, 191, 313, 390, 403, 409, 419, 431, 439, 509, 512, 547, 569, 611, 621, 634, 645, 666, 718, 742, 758, 777, 785, 814, 873, 880, 884, 1002, 1013, 1032, 1069, 1163, 1222, 1245, 1291, 1320, 1378, 1393, 1418, 1427, 1454, 1456, 1466, 1473, 1507, 1582, 1613, 1687, 1719, 1762, 1764, 1801, 1806, 1827, 1840, 1871, 1901, 1915, 1918, 1948, 1992, 2096, 2121, 2167, 2183, 2205, 2299, 2301, 2323, 2364, 2385, 2389, 2411, 2429, 2437, 2457, 2492, 2505, 2516, 2589, 2596, 2635, 2659, 2664, 2669, 2705, 2733, 2736, 2782, 2794, 2849, 2859, 2903, 2952, 3018, 3113, 3131, 3168, 3237, 3257, 3289, 3399, 3470, 3557, 3580, 3638, 3684, 3718, 3725, 3753, 3757, 3766, 3795, 3815, 3823, 3833, 3837, 3936, 4095, 4099, 4131, 4157, 4175, 4239, 4257, 4272, 4286, 4338, 4348, 4362, 4376, 4407, 4454, 4494, 4534, 4571 |
| abstract_inverted_index.us | 1673, 1755, 1839, 2006, 2617, 2709, 2732, 3259, 3573, 4238 |
| abstract_inverted_index.we | 1048, 1649, 1746, 1758, 2433, 2667, 2683, 2688, 2963, 3022, 3190, 3287, 3292, 3594, 3612, 4127, 4155, 4321, 4424 |
| abstract_inverted_index.'in | 1877 |
| abstract_inverted_index.'to | 1558 |
| abstract_inverted_index.(or | 1227, 3181, 4360 |
| abstract_inverted_index.(to | 2360, 2369 |
| abstract_inverted_index.AI. | 1620, 1977, 2604 |
| abstract_inverted_index.Air | 377 |
| abstract_inverted_index.All | 2136 |
| abstract_inverted_index.BJM | 1288, 1416, 1452 |
| abstract_inverted_index.CEO | 2478 |
| abstract_inverted_index.DHL | 363 |
| abstract_inverted_index.For | 116, 2239, 3124, 3602, 4279 |
| abstract_inverted_index.GAI | 39, 173, 196, 203, 326, 340, 478, 527, 561, 628, 653, 728, 833, 866, 944, 1020, 1053, 1084, 1092, 1125, 1147, 1235, 1279, 1300, 1400, 1433, 1470, 1478, 2791, 3261, 3291, 3403, 3465, 3656, 3697, 3763, 3773, 4055, 4089, 4160, 4224, 4428, 4436 |
| abstract_inverted_index.SAP | 2130 |
| abstract_inverted_index.The | 7, 676, 725, 854, 868, 954, 1310, 1342, 1389, 1497, 1540, 1600, 1664, 1736, 1859, 2336, 2530, 3392, 3647, 3768, 3784, 4082, 4398 |
| abstract_inverted_index.aim | 430 |
| abstract_inverted_index.all | 2071, 2214, 3859, 3863, 3982 |
| abstract_inverted_index.and | 18, 31, 63, 131, 143, 152, 167, 179, 188, 193, 200, 212, 229, 253, 262, 286, 290, 295, 311, 320, 330, 352, 370, 395, 402, 412, 446, 452, 491, 528, 555, 562, 574, 582, 608, 614, 640, 672, 690, 695, 792, 827, 842, 852, 893, 899, 905, 919, 931, 1021, 1035, 1040, 1100, 1117, 1137, 1177, 1214, 1219, 1262, 1278, 1296, 1301, 1307, 1337, 1352, 1374, 1396, 1405, 1408, 1414, 1421, 1425, 1437, 1444, 1468, 1484, 1488, 1518, 1526, 1537, 1544, 1553, 1566, 1587, 1596, 1611, 1617, 1638, 1661, 1703, 1756, 1776, 1783, 1809, 1825, 1848, 1857, 1873, 1886, 1894, 1907, 1969, 2001, 2025, 2052, 2082, 2116, 2139, 2144, 2151, 2171, 2217, 2220, 2226, 2260, 2286, 2356, 2366, 2371, 2401, 2415, 2442, 2453, 2509, 2560, 2576, 2615, 2629, 2646, 2679, 2686, 2699, 2722, 2728, 2735, 2744, 2764, 2780, 2803, 2809, 2827, 2854, 2916, 2925, 2930, 2936, 2954, 2960, 2984, 2989, 2993, 3015, 3088, 3134, 3139, 3173, 3187, 3217, 3222, 3230, 3246, 3279, 3282, 3300, 3307, 3323, 3327, 3337, 3341, 3366, 3383, 3426, 3429, 3490, 3492, 3503, 3510, 3526, 3530, 3546, 3566, 3578, 3624, 3650, 3664, 3687, 3712, 3722, 3746, 3751, 3870, 3898, 3904, 3915, 3927, 3941, 3944, 3960, 3971, 3992, 4084, 4102, 4109, 4136, 4161, 4167, 4196, 4270, 4276, 4292, 4308, 4365, 4385, 4420, 4472, 4478, 4505, 4549, 4573, 4585 |
| abstract_inverted_index.are | 844, 1269, 1368, 1522, 1717, 1759, 1881, 2228, 2251, 2258, 2523, 2639, 2876, 2886, 3011, 3466, 3485, 3497, 3527, 3807, 3974, 3986, 4093, 4197, 4489, 4518, 4580 |
| abstract_inverted_index.art | 1821 |
| abstract_inverted_index.ask | 1042, 4363 |
| abstract_inverted_index.be, | 2599 |
| abstract_inverted_index.but | 847, 1471, 1515, 1572, 1805, 2035, 2231, 2247, 2312, 2362, 2663, 2756, 2869, 3496, 3985, 4185 |
| abstract_inverted_index.buy | 1658 |
| abstract_inverted_index.can | 578, 663, 963, 1072, 1280, 1912, 2598, 2606, 2644, 2740, 2792, 3404, 3550, 3595, 3764, 3929, 4314, 4392, 4425, 4552 |
| abstract_inverted_index.cue | 2338 |
| abstract_inverted_index.do, | 1559 |
| abstract_inverted_index.few | 1585, 4062 |
| abstract_inverted_index.for | 49, 52, 94, 259, 350, 435, 533, 678, 914, 1130, 1174, 1675, 1855, 1934, 1960, 2110, 2134, 2154, 2497, 2621, 2754, 3052, 3080, 3235, 3390, 3447, 4075, 4243, 4460, 4527, 4547 |
| abstract_inverted_index.had | 2501 |
| abstract_inverted_index.has | 14, 2044, 2816, 2934, 3165, 3609, 3779, 4318, 4413 |
| abstract_inverted_index.how | 660, 1047, 1868, 2083, 2625, 2666, 3136, 3441, 3453, 3575, 3611, 3713, 4192, 4513 |
| abstract_inverted_index.is' | 2460 |
| abstract_inverted_index.is, | 2063, 2880, 3059 |
| abstract_inverted_index.it, | 886, 1811 |
| abstract_inverted_index.its | 257, 566, 1033, 1302, 1597, 3298, 4057, 4107, 4112, 4162 |
| abstract_inverted_index.may | 1086, 1797, 1898, 2572, 2654, 2707, 2964, 3023, 3436, 4567 |
| abstract_inverted_index.new | 393, 540, 1200, 1536, 1659, 2074, 2387, 2970, 3091, 3400, 3477, 3564, 3693, 3734, 3819, 3908, 3983, 4193, 4220 |
| abstract_inverted_index.not | 808, 845, 1094, 1318, 1463, 1508, 1523, 1547, 1728, 1743, 1748, 1800, 1890, 2018, 2036, 2132, 2229, 2502, 2534, 2595, 2613, 2658, 2762, 2866, 3017, 3100, 3269, 4023, 4181, 4261 |
| abstract_inverted_index.old | 2390 |
| abstract_inverted_index.one | 712, 786, 1677, 1962, 1980, 1986, 2127 |
| abstract_inverted_index.our | 779, 871, 1056, 1656, 1692, 1787, 1863, 1999, 2003, 2050, 2066, 2086, 2113, 2236, 2351, 2631, 2718, 2726, 2749, 2927, 3445, 4217 |
| abstract_inverted_index.out | 803, 809, 1744, 3209 |
| abstract_inverted_index.own | 2320 |
| abstract_inverted_index.pay | 2493 |
| abstract_inverted_index.see | 1528 |
| abstract_inverted_index.set | 1925 |
| abstract_inverted_index.the | 25, 29, 66, 82, 102, 141, 146, 150, 170, 177, 210, 223, 271, 282, 317, 323, 344, 392, 421, 474, 484, 492, 495, 510, 522, 550, 557, 563, 592, 626, 636, 646, 650, 670, 699, 707, 716, 720, 730, 733, 749, 762, 765, 768, 771, 795, 816, 820, 823, 863, 876, 891, 912, 917, 926, 934, 941, 946, 965, 987, 1000, 1025, 1060, 1067, 1103, 1110, 1143, 1157, 1165, 1180, 1189, 1205, 1225, 1232, 1250, 1258, 1263, 1274, 1340, 1348, 1362, 1394, 1429, 1475, 1529, 1589, 1607, 1614, 1623, 1629, 1633, 1652, 1721, 1732, 1740, 1768, 1778, 1803, 1813, 1820, 1823, 1828, 1844, 1922, 1974, 1979, 1988, 2012, 2023, 2029, 2090, 2097, 2187, 2189, 2254, 2272, 2321, 2341, 2406, 2409, 2413, 2417, 2451, 2454, 2472, 2484, 2507, 2587, 2590, 2601, 2661, 2673, 2677, 2691, 2696, 2700, 2771, 2774, 2797, 2800, 2804, 2812, 2871, 2909, 2923, 2945, 2949, 2966, 2979, 3026, 3034, 3040, 3050, 3056, 3062, 3067, 3070, 3078, 3084, 3108, 3114, 3121, 3137, 3149, 3231, 3295, 3301, 3355, 3373, 3409, 3421, 3448, 3511, 3520, 3561, 3567, 3581, 3597, 3632, 3672, 3689, 3702, 3707, 3731, 3742, 3782, 3788, 3809, 3816, 3824, 3840, 3920, 3923, 3947, 3954, 3979, 4006, 4017, 4025, 4031, 4072, 4078, 4100, 4118, 4137, 4183, 4200, 4207, 4211, 4244, 4263, 4293, 4306, 4324, 4332, 4339, 4476, 4500, 4575, 4593 |
| abstract_inverted_index.use | 1233, 1251, 1618, 2237, 2423, 4011 |
| abstract_inverted_index.was | 2471, 3044, 3066, 3799 |
| abstract_inverted_index.way | 407, 1105, 3961, 4264, 4576 |
| abstract_inverted_index.web | 83, 157, 161 |
| abstract_inverted_index.who | 601, 2318, 3048, 4544 |
| abstract_inverted_index.yet | 1095, 1891, 2920 |
| abstract_inverted_index.– | 1785, 2094, 2104, 2716, 3473 |
| abstract_inverted_index.'the | 805 |
| abstract_inverted_index.'who | 2489 |
| abstract_inverted_index.(but | 2017 |
| abstract_inverted_index.-fex | 1554, 1814 |
| abstract_inverted_index.1740 | 235 |
| abstract_inverted_index.GAI, | 1168 |
| abstract_inverted_index.GAI. | 427, 675, 1365 |
| abstract_inverted_index.Gore | 1041, 4253 |
| abstract_inverted_index.Like | 2213 |
| abstract_inverted_index.Most | 1621 |
| abstract_inverted_index.Only | 2463 |
| abstract_inverted_index.PWC, | 302 |
| abstract_inverted_index.Paul | 5 |
| abstract_inverted_index.Ren, | 1 |
| abstract_inverted_index.They | 1140, 1195, 1240 |
| abstract_inverted_index.This | 34, 96, 506, 630, 1668, 1696, 1793, 1818, 1957, 2295, 2584, 2730, 2829, 2933, 3344 |
| abstract_inverted_index.Very | 2009 |
| abstract_inverted_index.aims | 633, 1417, 1453 |
| abstract_inverted_index.al., | 456, 3202, 3629, 4303, 4485 |
| abstract_inverted_index.also | 137, 277, 1391, 1472, 1516, 1573, 2313, 2363, 2856, 2870, 3498, 3685, 4319 |
| abstract_inverted_index.and, | 1682, 1850, 2176 |
| abstract_inverted_index.are. | 2529 |
| abstract_inverted_index.art, | 1836 |
| abstract_inverted_index.bad, | 2315, 3651 |
| abstract_inverted_index.been | 417, 2817, 3166, 3416, 4052, 4600 |
| abstract_inverted_index.body | 1459 |
| abstract_inverted_index.both | 16, 208, 1212, 1967, 2164, 2354, 3741 |
| abstract_inverted_index.call | 1001 |
| abstract_inverted_index.case | 1733, 2473 |
| abstract_inverted_index.cell | 2531 |
| abstract_inverted_index.core | 2602 |
| abstract_inverted_index.cue, | 1865 |
| abstract_inverted_index.data | 165, 1715, 1774, 1927, 2384, 2395, 2403, 2428, 4311 |
| abstract_inverted_index.does | 1093, 1546, 2054, 2131, 3254, 4022, 4180 |
| abstract_inverted_index.easy | 1640 |
| abstract_inverted_index.even | 538, 1724, 1780, 2424, 2831, 2975, 3001, 3012 |
| abstract_inverted_index.fact | 2255, 2269, 2282 |
| abstract_inverted_index.find | 405, 2783 |
| abstract_inverted_index.five | 2494 |
| abstract_inverted_index.food | 1173 |
| abstract_inverted_index.for, | 2270 |
| abstract_inverted_index.from | 81, 488, 781, 1551, 1556, 1563, 1754, 1966, 2119, 2586, 2592, 2844, 2888, 3262, 3968, 4444, 4582 |
| abstract_inverted_index.fuel | 1655 |
| abstract_inverted_index.gap. | 482 |
| abstract_inverted_index.good | 2298, 3649 |
| abstract_inverted_index.grey | 1903 |
| abstract_inverted_index.have | 47, 276, 306, 416, 2766, 2913, 3219, 3256, 3415, 3711, 4051, 4284, 4322, 4599 |
| abstract_inverted_index.help | 2616 |
| abstract_inverted_index.here | 1345 |
| abstract_inverted_index.how, | 1959 |
| abstract_inverted_index.huge | 1771, 2293, 2307 |
| abstract_inverted_index.hype | 476, 554 |
| abstract_inverted_index.i.e. | 2279 |
| abstract_inverted_index.into | 176, 243, 316, 1055, 1434, 2610 |
| abstract_inverted_index.knew | 2274 |
| abstract_inverted_index.know | 874, 1644, 1749, 3191 |
| abstract_inverted_index.lens | 856 |
| abstract_inverted_index.less | 2265 |
| abstract_inverted_index.like | 124, 3402, 3464, 3655, 3762 |
| abstract_inverted_index.list | 1665 |
| abstract_inverted_index.made | 665, 4053, 4105 |
| abstract_inverted_index.make | 667, 1510, 1810, 1919, 2670, 3905 |
| abstract_inverted_index.many | 2111, 2347, 2641, 2647, 3331, 4594 |
| abstract_inverted_index.mean | 120, 3389, 3765 |
| abstract_inverted_index.mere | 1144 |
| abstract_inverted_index.more | 112, 572, 907, 1271, 2155, 2200, 2447, 2656, 2710, 2976, 3002, 3013, 3939 |
| abstract_inverted_index.most | 1951, 3810 |
| abstract_inverted_index.move | 548, 1014, 2585 |
| abstract_inverted_index.much | 206, 1082, 2376, 2446, 2538, 2943, 4343 |
| abstract_inverted_index.need | 532, 546, 717, 1651, 3051, 3079, 3130 |
| abstract_inverted_index.next | 1653 |
| abstract_inverted_index.norm | 734 |
| abstract_inverted_index.not' | 2441 |
| abstract_inverted_index.not, | 2357, 2524 |
| abstract_inverted_index.only | 1464, 1509, 2867, 3588, 3987 |
| abstract_inverted_index.out, | 1570, 4000 |
| abstract_inverted_index.over | 992 |
| abstract_inverted_index.past | 968, 2418, 3278, 3552, 3615 |
| abstract_inverted_index.pick | 1569, 2365 |
| abstract_inverted_index.real | 85, 4528 |
| abstract_inverted_index.room | 2153 |
| abstract_inverted_index.root | 2342 |
| abstract_inverted_index.same | 1104, 1924, 2191, 3232 |
| abstract_inverted_index.seek | 1319, 4156 |
| abstract_inverted_index.seem | 1087 |
| abstract_inverted_index.seen | 1984, 2106 |
| abstract_inverted_index.some | 50, 336 |
| abstract_inverted_index.soon | 2148, 4568 |
| abstract_inverted_index.such | 269, 1132, 2394, 3600, 3645, 3676, 3695, 4070, 4222 |
| abstract_inverted_index.sum, | 1287 |
| abstract_inverted_index.sure | 1920 |
| abstract_inverted_index.take | 1179, 1241, 1996, 2840, 4203 |
| abstract_inverted_index.team | 1064, 1077, 4396, 4497, 4520, 4529, 4540 |
| abstract_inverted_index.than | 812, 1955, 2267, 2456, 2526, 2713, 2978, 3004, 3267 |
| abstract_inverted_index.that | 46, 463, 577, 787, 804, 832, 962, 1004, 1030, 1192, 1385, 1462, 1521, 1688, 1714, 1739, 1795, 1921, 1931, 1972, 2042, 2062, 2129, 2161, 2179, 2207, 2250, 2256, 2261, 2332, 2349, 2436, 2504, 2724, 2758, 2768, 2790, 2863, 2879, 2911, 3058, 3210, 3346, 3414, 3534, 3540, 3593, 3634, 3798, 3827, 3855, 3865, 3895, 3925, 3956, 4177, 4313, 4451, 4565, 4598 |
| abstract_inverted_index.them | 2291, 2310, 2325, 3571, 4242, 4337 |
| abstract_inverted_index.then | 2464, 2477, 2561, 3467 |
| abstract_inverted_index.they | 818, 830, 857, 956, 1153, 1325, 2084, 2522, 2528, 2703, 2912, 2921, 3535, 3583, 3710, 3714, 4202, 4267 |
| abstract_inverted_index.this | 118, 136, 238, 400, 585, 590, 622, 1314, 1450, 2197, 2608, 2643, 2651, 2759, 2973, 3110, 3211, 3371, 4152, 4427, 4438, 4464 |
| abstract_inverted_index.thus | 910 |
| abstract_inverted_index.time | 86, 993, 2974, 3111, 3935 |
| abstract_inverted_index.upon | 888, 1705 |
| abstract_inverted_index.used | 1914, 2381, 3831 |
| abstract_inverted_index.vast | 178, 2067 |
| abstract_inverted_index.very | 1615, 1706, 1923, 2190 |
| abstract_inverted_index.view | 2203, 4399 |
| abstract_inverted_index.want | 1753, 2491, 3288 |
| abstract_inverted_index.wave | 552 |
| abstract_inverted_index.well | 985, 1645, 2276, 3667, 4066 |
| abstract_inverted_index.were | 2014, 3949, 3964 |
| abstract_inverted_index.what | 875, 1750, 1875, 1888, 2521, 2527, 2566, 2577, 2593, 2597, 2611, 2737, 2776, 3386, 3560, 3759, 3778, 4422, 4516 |
| abstract_inverted_index.when | 939, 1648, 1725, 2020, 2481, 2834, 3090, 4154, 4531 |
| abstract_inverted_index.will | 1208, 1650, 1995, 2032, 2147, 2159, 2232, 2242, 2288, 2296, 2319, 2328, 2422, 2465, 2627, 3127, 3443, 3455, 3900, 4225, 4236 |
| abstract_inverted_index.with | 24, 91, 616, 649, 748, 981, 1171, 1357, 1423, 1449, 1626, 1734, 2474, 2483, 2556, 2824, 2908, 2981, 3005, 3144, 3176, 3195, 3397, 3523, 3570, 3653, 3705, 3772, 3777, 3867, 4056, 4145, 4331, 4369, 4405 |
| abstract_inverted_index.word | 1860 |
| abstract_inverted_index.'art' | 1552 |
| abstract_inverted_index.'what | 2439, 2459 |
| abstract_inverted_index.(BJM) | 597 |
| abstract_inverted_index.(ERP) | 2102 |
| abstract_inverted_index.(GAI) | 13, 1595, 3164 |
| abstract_inverted_index.(e.g. | 298, 443, 693, 994, 2078 |
| abstract_inverted_index.(from | 2277 |
| abstract_inverted_index.1987) | 2047 |
| abstract_inverted_index.2006) | 2219 |
| abstract_inverted_index.2021) | 448 |
| abstract_inverted_index.Ellis | 1039 |
| abstract_inverted_index.GAI's | 247, 3309, 3348 |
| abstract_inverted_index.Heinz | 373 |
| abstract_inverted_index.Holt, | 1895 |
| abstract_inverted_index.India | 378 |
| abstract_inverted_index.Islam | 1218 |
| abstract_inverted_index.Meyer | 793, 1496 |
| abstract_inverted_index.Paolo | 1491 |
| abstract_inverted_index.Steve | 2475 |
| abstract_inverted_index.Table | 333 |
| abstract_inverted_index.There | 542, 1576 |
| abstract_inverted_index.These | 183, 428, 1267, 1366, 2142 |
| abstract_inverted_index.While | 698 |
| abstract_inverted_index.World | 303 |
| abstract_inverted_index.[food | 374 |
| abstract_inverted_index.about | 140, 398, 1224, 1943, 1976, 2711, 2714, 2717, 3260, 3385, 3440, 3452, 3574, 3643, 3953, 4054, 4159 |
| abstract_inverted_index.adage | 2331 |
| abstract_inverted_index.alike | 297 |
| abstract_inverted_index.along | 980, 2823 |
| abstract_inverted_index.among | 1936 |
| abstract_inverted_index.area. | 588 |
| abstract_inverted_index.areas | 123, 1904, 3318 |
| abstract_inverted_index.avoid | 2618 |
| abstract_inverted_index.below | 702 |
| abstract_inverted_index.bring | 858, 3930, 4024 |
| abstract_inverted_index.broad | 466 |
| abstract_inverted_index.cars, | 1657 |
| abstract_inverted_index.case, | 2198 |
| abstract_inverted_index.clear | 2041, 3775 |
| abstract_inverted_index.comes | 1550, 1562, 4533 |
| abstract_inverted_index.could | 119, 1386, 1963, 2443, 2568, 2579, 3388 |
| abstract_inverted_index.craft | 1608 |
| abstract_inverted_index.daily | 1057 |
| abstract_inverted_index.data. | 1139 |
| abstract_inverted_index.delve | 242 |
| abstract_inverted_index.draws | 1704 |
| abstract_inverted_index.facts | 2257, 2327 |
| abstract_inverted_index.first | 1601, 2024, 2098, 2485 |
| abstract_inverted_index.forms | 1708, 2058, 2075, 3092 |
| abstract_inverted_index.found | 2185 |
| abstract_inverted_index.fresh | 1358 |
| abstract_inverted_index.given | 149, 2757 |
| abstract_inverted_index.grand | 2117 |
| abstract_inverted_index.group | 741, 1207 |
| abstract_inverted_index.guide | 410, 579 |
| abstract_inverted_index.hand, | 1981, 2092 |
| abstract_inverted_index.helps | 1838 |
| abstract_inverted_index.holds | 1791 |
| abstract_inverted_index.human | 1107, 2742, 3145, 4455 |
| abstract_inverted_index.inter | 1564 |
| abstract_inverted_index.issue | 1737 |
| abstract_inverted_index.knot) | 2370 |
| abstract_inverted_index.large | 1254, 4327 |
| abstract_inverted_index.least | 2125, 4262 |
| abstract_inverted_index.leave | 1932, 2152 |
| abstract_inverted_index.leg-, | 2343 |
| abstract_inverted_index.long. | 1667 |
| abstract_inverted_index.marks | 87 |
| abstract_inverted_index.means | 1794, 1870, 2166, 3087, 3345, 4404 |
| abstract_inverted_index.media | 1694 |
| abstract_inverted_index.might | 163 |
| abstract_inverted_index.minds | 2000 |
| abstract_inverted_index.myths | 671 |
| abstract_inverted_index.novel | 753, 2397 |
| abstract_inverted_index.offer | 314, 1321, 1583 |
| abstract_inverted_index.often | 499, 1502, 3468, 3499, 4141 |
| abstract_inverted_index.other | 982, 2091, 3266, 3317, 3362, 3525, 3747 |
| abstract_inverted_index.page. | 1695 |
| abstract_inverted_index.paper | 624 |
| abstract_inverted_index.phone | 2532, 2536, 2571 |
| abstract_inverted_index.place | 703, 1022, 4204 |
| abstract_inverted_index.point | 1331, 3208 |
| abstract_inverted_index.posit | 831 |
| abstract_inverted_index.power | 2508 |
| abstract_inverted_index.prior | 535 |
| abstract_inverted_index.probe | 1902 |
| abstract_inverted_index.prove | 2033 |
| abstract_inverted_index.quest | 677 |
| abstract_inverted_index.quick | 217 |
| abstract_inverted_index.range | 1198, 3621 |
| abstract_inverted_index.read' | 1571 |
| abstract_inverted_index.read, | 2361 |
| abstract_inverted_index.realm | 722, 769 |
| abstract_inverted_index.seeks | 1465 |
| abstract_inverted_index.sense | 668, 1511, 2671, 3082 |
| abstract_inverted_index.serve | 602, 1008, 1326, 2706 |
| abstract_inverted_index.seven | 700 |
| abstract_inverted_index.shape | 1193, 1474, 2725 |
| abstract_inverted_index.shift | 778, 4288 |
| abstract_inverted_index.space | 1854, 1933 |
| abstract_inverted_index.stand | 2133 |
| abstract_inverted_index.swift | 418 |
| abstract_inverted_index.tasks | 1131 |
| abstract_inverted_index.team, | 1115, 4504 |
| abstract_inverted_index.terms | 225, 516, 2519, 3700 |
| abstract_inverted_index.their | 518, 617, 1120, 1127, 1435, 1513, 1765, 2224, 3427, 3662, 3669, 3801, 3957, 4231 |
| abstract_inverted_index.there | 1718, 1892, 2262, 2638, 3126, 3435 |
| abstract_inverted_index.these | 72, 460, 1533, 1580, 1603, 2874, 3008, 3238, 4389, 4561 |
| abstract_inverted_index.think | 2079, 2517 |
| abstract_inverted_index.third | 2337 |
| abstract_inverted_index.those | 2249, 2317 |
| abstract_inverted_index.three | 752 |
| abstract_inverted_index.time, | 51 |
| abstract_inverted_index.tools | 1426, 1635 |
| abstract_inverted_index.trend | 127, 4442 |
| abstract_inverted_index.truly | 2468 |
| abstract_inverted_index.under | 706, 3853, 3965, 4421 |
| abstract_inverted_index.until | 2126, 2432 |
| abstract_inverted_index.using | 194, 222, 1124 |
| abstract_inverted_index.value | 1953, 2991, 3393, 3633, 4108 |
| abstract_inverted_index.views | 2031 |
| abstract_inverted_index.ways, | 898 |
| abstract_inverted_index.ways. | 1539 |
| abstract_inverted_index.weigh | 612 |
| abstract_inverted_index.when, | 1674 |
| abstract_inverted_index.where | 916, 951, 1439, 2781, 2873, 3479 |
| abstract_inverted_index.which | 1070, 1204, 1249, 1712, 1837, 1866, 2158, 2344, 2680, 2687, 3065, 3304, 3364, 3692, 4035, 4088, 4233, 4266, 4406, 4578 |
| abstract_inverted_index.whose | 840 |
| abstract_inverted_index.words | 1500, 1534, 2348 |
| abstract_inverted_index.work, | 1480 |
| abstract_inverted_index.work. | 1058 |
| abstract_inverted_index.worst | 1989 |
| abstract_inverted_index.would | 2490, 3099, 4506 |
| abstract_inverted_index.wrong | 2016 |
| abstract_inverted_index.'team' | 1051 |
| abstract_inverted_index.1998), | 2420 |
| abstract_inverted_index.2000), | 2223 |
| abstract_inverted_index.2006). | 2141 |
| abstract_inverted_index.2007). | 697 |
| abstract_inverted_index.2017). | 2462, 3284, 4278 |
| abstract_inverted_index.2022), | 1896, 2962 |
| abstract_inverted_index.2023). | 457, 2884, 3461, 4048, 4081 |
| abstract_inverted_index.Brown, | 1038, 4248 |
| abstract_inverted_index.Decker | 930 |
| abstract_inverted_index.Forum) | 305 |
| abstract_inverted_index.Google | 220, 2552 |
| abstract_inverted_index.Munzio | 1176 |
| abstract_inverted_index.Rather | 811 |
| abstract_inverted_index.Renate | 1495 |
| abstract_inverted_index.Riikka | 2 |
| abstract_inverted_index.Romans | 2273 |
| abstract_inverted_index.Shuang | 0 |
| abstract_inverted_index.Tammar | 1493 |
| abstract_inverted_index.Within | 237 |
| abstract_inverted_index.Zilber | 791 |
| abstract_inverted_index.above, | 1789 |
| abstract_inverted_index.access | 79, 162 |
| abstract_inverted_index.across | 250, 3360, 3619, 4259, 4592 |
| abstract_inverted_index.advent | 8 |
| abstract_inverted_index.again, | 2177 |
| abstract_inverted_index.agency | 2045, 2779 |
| abstract_inverted_index.always | 1790, 2182, 2284 |
| abstract_inverted_index.amidst | 459 |
| abstract_inverted_index.amount | 2308 |
| abstract_inverted_index.argued | 99 |
| abstract_inverted_index.around | 477, 674, 1299, 2694 |
| abstract_inverted_index.become | 1387, 2444, 2580, 4394 |
| abstract_inverted_index.begins | 2553 |
| abstract_inverted_index.better | 2515, 3487, 3558, 3726, 4240 |
| abstract_inverted_index.beyond | 38, 549, 1015, 1347, 2770 |
| abstract_inverted_index.bigger | 2425 |
| abstract_inverted_index.called | 1761 |
| abstract_inverted_index.common | 713 |
| abstract_inverted_index.create | 1841, 1916, 3536 |
| abstract_inverted_index.debate | 1298, 1975, 2805 |
| abstract_inverted_index.deeper | 1294, 3755, 4228 |
| abstract_inverted_index.define | 2458 |
| abstract_inverted_index.direct | 2002, 4471 |
| abstract_inverted_index.effect | 2227, 3709 |
| abstract_inverted_index.effort | 632 |
| abstract_inverted_index.either | 680, 1282 |
| abstract_inverted_index.enough | 1578 |
| abstract_inverted_index.ensure | 570 |
| abstract_inverted_index.extend | 175, 1346, 1392 |
| abstract_inverted_index.extent | 1068, 2738 |
| abstract_inverted_index.facere | 1557 |
| abstract_inverted_index.field. | 1341 |
| abstract_inverted_index.forces | 279, 991 |
| abstract_inverted_index.forms, | 2398 |
| abstract_inverted_index.forth. | 1663 |
| abstract_inverted_index.forums | 312 |
| abstract_inverted_index.foster | 2302 |
| abstract_inverted_index.future | 580, 806, 824, 877, 894, 1036, 1476, 1741, 1751, 2414, 2452, 2662, 2675 |
| abstract_inverted_index.group, | 747 |
| abstract_inverted_index.having | 2305, 4469 |
| abstract_inverted_index.humans | 1277 |
| abstract_inverted_index.images | 1842 |
| abstract_inverted_index.impact | 651, 942, 1304, 4164, 4195 |
| abstract_inverted_index.indeed | 2372 |
| abstract_inverted_index.invent | 2386 |
| abstract_inverted_index.issues | 425, 429, 1268 |
| abstract_inverted_index.itself | 40, 2209, 4021 |
| abstract_inverted_index.joined | 278 |
| abstract_inverted_index.latter | 750 |
| abstract_inverted_index.legare | 2368 |
| abstract_inverted_index.legere | 1567, 2359 |
| abstract_inverted_index.made), | 2280 |
| abstract_inverted_index.make'. | 1560 |
| abstract_inverted_index.making | 821, 1610, 2005, 2290, 3081 |
| abstract_inverted_index.market | 125 |
| abstract_inverted_index.member | 1078 |
| abstract_inverted_index.middle | 2192 |
| abstract_inverted_index.models | 1256, 4329 |
| abstract_inverted_index.nature | 155, 797, 1226, 1264, 3674 |
| abstract_inverted_index.offers | 1852 |
| abstract_inverted_index.people | 901 |
| abstract_inverted_index.pieces | 701 |
| abstract_inverted_index.points | 508, 879, 1775, 1826 |
| abstract_inverted_index.power. | 2335 |
| abstract_inverted_index.proven | 2015 |
| abstract_inverted_index.raises | 138 |
| abstract_inverted_index.rather | 1954, 2525, 4186 |
| abstract_inverted_index.remain | 1379 |
| abstract_inverted_index.robust | 503 |
| abstract_inverted_index.search | 218, 224, 2555 |
| abstract_inverted_index.second | 1864, 2026 |
| abstract_inverted_index.shaped | 848 |
| abstract_inverted_index.should | 834, 1007, 1049, 3293, 4554 |
| abstract_inverted_index.single | 1949 |
| abstract_inverted_index.social | 1693, 2929, 3410 |
| abstract_inverted_index.source | 1504 |
| abstract_inverted_index.sparks | 1846 |
| abstract_inverted_index.stands | 2339 |
| abstract_inverted_index.states | 1945 |
| abstract_inverted_index.still, | 1757 |
| abstract_inverted_index.theory | 1413, 3038, 3756 |
| abstract_inverted_index.there, | 1729 |
| abstract_inverted_index.there; | 1745 |
| abstract_inverted_index.thinks | 1678 |
| abstract_inverted_index.thread | 714 |
| abstract_inverted_index.trend, | 422 |
| abstract_inverted_index.truths | 673 |
| abstract_inverted_index.unfold | 921, 3715 |
| abstract_inverted_index.unique | 523 |
| abstract_inverted_index.urgent | 531 |
| abstract_inverted_index.useful | 1799, 1900 |
| abstract_inverted_index.viewed | 836 |
| abstract_inverted_index.views, | 2157 |
| abstract_inverted_index.views. | 2195 |
| abstract_inverted_index.wicked | 2169, 2173 |
| abstract_inverted_index.wisdom | 2180 |
| abstract_inverted_index.wisely | 1964 |
| abstract_inverted_index.within | 902, 1024, 3370, 3993, 4475, 4602 |
| abstract_inverted_index.world, | 1722, 2353 |
| abstract_inverted_index.wrong, | 2034 |
| abstract_inverted_index.yields | 233 |
| abstract_inverted_index.'Solves | 2135 |
| abstract_inverted_index.'facts' | 2246 |
| abstract_inverted_index.'inter' | 1869 |
| abstract_inverted_index.'made', | 2259 |
| abstract_inverted_index.(Hjorth | 1893 |
| abstract_inverted_index.Academy | 273 |
| abstract_inverted_index.Benbya, | 444 |
| abstract_inverted_index.British | 272, 593 |
| abstract_inverted_index.Davison | 1116 |
| abstract_inverted_index.Despite | 483, 1767 |
| abstract_inverted_index.Hibbert | 6 |
| abstract_inverted_index.Hopper, | 2140 |
| abstract_inverted_index.Indeed, | 1642 |
| abstract_inverted_index.Journal | 594 |
| abstract_inverted_index.Learned | 267 |
| abstract_inverted_index.Nestlé | 369 |
| abstract_inverted_index.Pachidi | 445 |
| abstract_inverted_index.Sarala, | 4 |
| abstract_inverted_index.Zalando | 347 |
| abstract_inverted_index.Zilber, | 1494 |
| abstract_inverted_index.[online | 348 |
| abstract_inverted_index.ability | 77, 1699, 2322 |
| abstract_inverted_index.action. | 1910 |
| abstract_inverted_index.address | 2168 |
| abstract_inverted_index.advance | 635, 1647 |
| abstract_inverted_index.affairs | 1947 |
| abstract_inverted_index.against | 1142 |
| abstract_inverted_index.amounts | 1772 |
| abstract_inverted_index.anxiety | 19 |
| abstract_inverted_index.appears | 1690 |
| abstract_inverted_index.attempt | 389, 2704 |
| abstract_inverted_index.becomes | 1079 |
| abstract_inverted_index.beings. | 1108 |
| abstract_inverted_index.between | 890, 900, 1276, 1883, 1905, 2194, 2806, 3086, 3277 |
| abstract_inverted_index.brought | 397, 3642 |
| abstract_inverted_index.camera, | 2543 |
| abstract_inverted_index.capture | 391 |
| abstract_inverted_index.careful | 187 |
| abstract_inverted_index.caution | 1141 |
| abstract_inverted_index.centred | 887 |
| abstract_inverted_index.change, | 2123 |
| abstract_inverted_index.cinema) | 2575 |
| abstract_inverted_index.cinema, | 2547 |
| abstract_inverted_index.climate | 2122 |
| abstract_inverted_index.closely | 43 |
| abstract_inverted_index.complex | 1944 |
| abstract_inverted_index.concept | 961, 1181 |
| abstract_inverted_index.context | 913, 955, 1111, 3302, 3690 |
| abstract_inverted_index.control | 1997 |
| abstract_inverted_index.courses | 1908 |
| abstract_inverted_index.created | 525 |
| abstract_inverted_index.current | 337, 551, 892, 1624 |
| abstract_inverted_index.debate, | 434 |
| abstract_inverted_index.debates | 1223 |
| abstract_inverted_index.defines | 2565 |
| abstract_inverted_index.demands | 524 |
| abstract_inverted_index.diverse | 180, 244, 618, 1311 |
| abstract_inverted_index.dollars | 2496 |
| abstract_inverted_index.dynamic | 35, 113, 151 |
| abstract_inverted_index.editors | 604 |
| abstract_inverted_index.effects | 843 |
| abstract_inverted_index.efforts | 462 |
| abstract_inverted_index.embrace | 420 |
| abstract_inverted_index.enhance | 101 |
| abstract_inverted_index.ethical | 1395, 4586 |
| abstract_inverted_index.existed | 48 |
| abstract_inverted_index.explain | 1469, 4132 |
| abstract_inverted_index.explore | 556, 1874, 1887, 2438, 2665 |
| abstract_inverted_index.extends | 37 |
| abstract_inverted_index.facets, | 245 |
| abstract_inverted_index.factors | 184 |
| abstract_inverted_index.factual | 2266 |
| abstract_inverted_index.factum, | 2278 |
| abstract_inverted_index.fashion | 351, 3592 |
| abstract_inverted_index.feature | 97, 1669 |
| abstract_inverted_index.finally | 2434 |
| abstract_inverted_index.forward | 408, 1185 |
| abstract_inverted_index.future, | 817, 1779, 1804, 1845, 4184 |
| abstract_inverted_index.general | 493, 4026 |
| abstract_inverted_index.grapple | 23 |
| abstract_inverted_index.guiding | 1011 |
| abstract_inverted_index.habits, | 2004 |
| abstract_inverted_index.hundred | 2495 |
| abstract_inverted_index.iPhone. | 2486 |
| abstract_inverted_index.imagine | 1519, 1588, 1808, 2412 |
| abstract_inverted_index.impact, | 568, 4232 |
| abstract_inverted_index.impacts | 319, 864 |
| abstract_inverted_index.invited | 598 |
| abstract_inverted_index.itself, | 2175 |
| abstract_inverted_index.journey | 1334 |
| abstract_inverted_index.lacking | 501 |
| abstract_inverted_index.leading | 281, 606 |
| abstract_inverted_index.leaving | 1169 |
| abstract_inverted_index.likely, | 1952, 2010 |
| abstract_inverted_index.looking | 2021 |
| abstract_inverted_index.machine | 54 |
| abstract_inverted_index.magnify | 2329 |
| abstract_inverted_index.manages | 788 |
| abstract_inverted_index.manner. | 1446 |
| abstract_inverted_index.meeting | 2582 |
| abstract_inverted_index.menaces | 1991 |
| abstract_inverted_index.middle, | 2188 |
| abstract_inverted_index.model's | 103 |
| abstract_inverted_index.mundane | 1784 |
| abstract_inverted_index.nothing | 2264, 3213 |
| abstract_inverted_index.nuanced | 573 |
| abstract_inverted_index.objects | 904 |
| abstract_inverted_index.obvious | 1525, 2614 |
| abstract_inverted_index.offered | 1344 |
| abstract_inverted_index.options | 1930 |
| abstract_inverted_index.outlook | 784 |
| abstract_inverted_index.panacea | 2109 |
| abstract_inverted_index.perhaps | 1270 |
| abstract_inverted_index.picking | 2402 |
| abstract_inverted_index.pivotal | 1369 |
| abstract_inverted_index.place). | 2583 |
| abstract_inverted_index.possess | 1096, 3774 |
| abstract_inverted_index.poverty | 2120 |
| abstract_inverted_index.predict | 815, 1802, 2660 |
| abstract_inverted_index.privacy | 166 |
| abstract_inverted_index.problem | 2174 |
| abstract_inverted_index.product | 1681, 1689 |
| abstract_inverted_index.promote | 432 |
| abstract_inverted_index.propose | 957 |
| abstract_inverted_index.provide | 106, 1119, 1419, 3719, 4226 |
| abstract_inverted_index.public, | 494 |
| abstract_inverted_index.purpose | 2407 |
| abstract_inverted_index.rapidly | 586 |
| abstract_inverted_index.readers | 1170 |
| abstract_inverted_index.realize | 2178, 2206, 2435 |
| abstract_inverted_index.refines | 732 |
| abstract_inverted_index.reflect | 464 |
| abstract_inverted_index.refrain | 1965 |
| abstract_inverted_index.related | 44, 1686, 3112 |
| abstract_inverted_index.relates | 1612 |
| abstract_inverted_index.relying | 2064 |
| abstract_inverted_index.reports | 310 |
| abstract_inverted_index.reshape | 28 |
| abstract_inverted_index.respond | 1763 |
| abstract_inverted_index.reveals | 479 |
| abstract_inverted_index.review, | 1135 |
| abstract_inverted_index.robotic | 1090 |
| abstract_inverted_index.seeking | 681 |
| abstract_inverted_index.senses, | 2070 |
| abstract_inverted_index.service | 130, 4384 |
| abstract_inverted_index.similar | 2095 |
| abstract_inverted_index.society | 1485 |
| abstract_inverted_index.sparked | 15 |
| abstract_inverted_index.special | 424 |
| abstract_inverted_index.systems | 2103, 4086 |
| abstract_inverted_index.theory, | 679 |
| abstract_inverted_index.there'. | 810 |
| abstract_inverted_index.thereby | 56, 1527, 2684 |
| abstract_inverted_index.through | 825, 2056, 4210 |
| abstract_inverted_index.towards | 1486, 4289, 4416 |
| abstract_inverted_index.unfold. | 1239 |
| abstract_inverted_index.utopian | 2145 |
| abstract_inverted_index.values. | 1956 |
| abstract_inverted_index.various | 251, 1634, 2057, 2701, 2837, 3075, 3361 |
| abstract_inverted_index.without | 1940 |
| abstract_inverted_index.working | 736, 743, 4291 |
| abstract_inverted_index.'choose, | 1568 |
| abstract_inverted_index.'context | 952, 1005 |
| abstract_inverted_index.'maker', | 1555 |
| abstract_inverted_index.(Feldman | 2216 |
| abstract_inverted_index.(Latour, | 2046 |
| abstract_inverted_index.Ballmer, | 2476 |
| abstract_inverted_index.Colquitt | 694 |
| abstract_inverted_index.Company, | 301 |
| abstract_inverted_index.Duolingo | 380 |
| abstract_inverted_index.Economic | 304 |
| abstract_inverted_index.Equally, | 829 |
| abstract_inverted_index.However, | 135, 458, 3585 |
| abstract_inverted_index.Internet | 181 |
| abstract_inverted_index.Lubinski | 932, 3159 |
| abstract_inverted_index.Luddites | 2013, 3948 |
| abstract_inverted_index.McKinsey | 299 |
| abstract_inverted_index.Mondelez | 371 |
| abstract_inverted_index.Scholar, | 221 |
| abstract_inverted_index.Worline, | 2218 |
| abstract_inverted_index.absence) | 1228 |
| abstract_inverted_index.academe. | 292 |
| abstract_inverted_index.academic | 211, 2355, 2881 |
| abstract_inverted_index.accuracy | 142 |
| abstract_inverted_index.actually | 1807 |
| abstract_inverted_index.adapting | 1373 |
| abstract_inverted_index.advanced | 195 |
| abstract_inverted_index.advocate | 819 |
| abstract_inverted_index.affects, | 2061 |
| abstract_inverted_index.analysis | 966, 3739, 4004, 4179 |
| abstract_inverted_index.approach | 190, 883, 950 |
| abstract_inverted_index.attempts | 662 |
| abstract_inverted_index.balanced | 2156, 2201 |
| abstract_inverted_index.bridging | 1412 |
| abstract_inverted_index.broadly. | 908 |
| abstract_inverted_index.business | 30, 199, 213, 252, 289, 329, 441, 607, 639, 689, 1306, 1383, 1407, 3607, 4166 |
| abstract_inverted_index.capacity | 104, 1631 |
| abstract_inverted_index.captures | 1700 |
| abstract_inverted_index.choose), | 2367 |
| abstract_inverted_index.choosing | 2400 |
| abstract_inverted_index.clothes, | 1660 |
| abstract_inverted_index.company] | 368, 376 |
| abstract_inverted_index.comprise | 1065 |
| abstract_inverted_index.concerns | 139, 3451, 3504, 4050 |
| abstract_inverted_index.conclude | 1154 |
| abstract_inverted_index.content. | 158 |
| abstract_inverted_index.contours | 1590, 3150 |
| abstract_inverted_index.creating | 57, 885, 2563 |
| abstract_inverted_index.criteria | 1939 |
| abstract_inverted_index.critical | 471, 1044, 4189 |
| abstract_inverted_index.customer | 114, 129, 359, 4383 |
| abstract_inverted_index.debunked | 2150 |
| abstract_inverted_index.demands. | 1766 |
| abstract_inverted_index.desires, | 1098 |
| abstract_inverted_index.dilemmas | 64 |
| abstract_inverted_index.diseases | 2115 |
| abstract_inverted_index.dynamics | 564, 763 |
| abstract_inverted_index.efficacy | 519, 3598 |
| abstract_inverted_index.elements | 705 |
| abstract_inverted_index.emergent | 796, 923 |
| abstract_inverted_index.emerging | 73, 627 |
| abstract_inverted_index.enabling | 111 |
| abstract_inverted_index.enchants | 1672 |
| abstract_inverted_index.engaging | 655 |
| abstract_inverted_index.entirely | 2007 |
| abstract_inverted_index.essence, | 999, 1448 |
| abstract_inverted_index.evolving | 587, 1375 |
| abstract_inverted_index.example, | 53, 2240, 3603 |
| abstract_inverted_index.examples | 1788 |
| abstract_inverted_index.existing | 513, 971, 1354, 3480, 3555 |
| abstract_inverted_index.focusing | 1187 |
| abstract_inverted_index.fruitful | 2448, 2657 |
| abstract_inverted_index.function | 1616, 2225 |
| abstract_inverted_index.futures. | 1599 |
| abstract_inverted_index.gather'. | 1575 |
| abstract_inverted_index.generate | 2430 |
| abstract_inverted_index.habits). | 2088 |
| abstract_inverted_index.informed | 575, 3096 |
| abstract_inverted_index.insights | 315, 1343, 1424, 1506, 3752 |
| abstract_inverted_index.inspired | 1605 |
| abstract_inverted_index.instance | 436 |
| abstract_inverted_index.instead, | 1324, 4468 |
| abstract_inverted_index.interest | 207 |
| abstract_inverted_index.isolated | 1017 |
| abstract_inverted_index.journals | 415, 610, 2882 |
| abstract_inverted_index.juggling | 1935 |
| abstract_inverted_index.language | 1255, 4328 |
| abstract_inverted_index.learning | 382 |
| abstract_inverted_index.managers | 1420, 4555 |
| abstract_inverted_index.matters' | 1006 |
| abstract_inverted_index.maximize | 1164 |
| abstract_inverted_index.meaning, | 1514 |
| abstract_inverted_index.meanings | 1520 |
| abstract_inverted_index.medieval | 2378 |
| abstract_inverted_index.navigate | 1428 |
| abstract_inverted_index.negative | 2588, 3812 |
| abstract_inverted_index.original | 1150 |
| abstract_inverted_index.outcomes | 920 |
| abstract_inverted_index.people's | 850, 3934 |
| abstract_inverted_index.phone?'. | 2499 |
| abstract_inverted_index.pitfalls | 453 |
| abstract_inverted_index.pivotal. | 1080 |
| abstract_inverted_index.planning | 2101 |
| abstract_inverted_index.platform | 349 |
| abstract_inverted_index.pointing | 802 |
| abstract_inverted_index.possible | 1598, 1990, 3906 |
| abstract_inverted_index.pressing | 545 |
| abstract_inverted_index.problems | 2170, 2391 |
| abstract_inverted_index.produced | 307 |
| abstract_inverted_index.produces | 1928 |
| abstract_inverted_index.profound | 92, 1272, 1303 |
| abstract_inverted_index.proximal | 1782 |
| abstract_inverted_index.question | 979, 1045, 3745 |
| abstract_inverted_index.realized | 2503 |
| abstract_inverted_index.realizes | 2128 |
| abstract_inverted_index.redefine | 1050 |
| abstract_inverted_index.reducing | 1941 |
| abstract_inverted_index.refining | 534 |
| abstract_inverted_index.relation | 438, 644, 4098 |
| abstract_inverted_index.relevant | 109, 1380 |
| abstract_inverted_index.reliance | 1145 |
| abstract_inverted_index.research | 411, 581, 642, 692, 1201, 2868 |
| abstract_inverted_index.resource | 2100 |
| abstract_inverted_index.results. | 236 |
| abstract_inverted_index.reveals. | 1817 |
| abstract_inverted_index.salvific | 1970 |
| abstract_inverted_index.scholars | 241, 600 |
| abstract_inverted_index.societal | 1397, 3458, 3493, 3508, 3640, 3708, 3813, 4027 |
| abstract_inverted_index.software | 361 |
| abstract_inverted_index.sourced, | 148 |
| abstract_inverted_index.specific | 264, 440, 897 |
| abstract_inverted_index.spectrum | 467 |
| abstract_inverted_index.starting | 1330 |
| abstract_inverted_index.statuses | 1906 |
| abstract_inverted_index.stresses | 1867 |
| abstract_inverted_index.studies. | 1309 |
| abstract_inverted_index.theories | 514, 536, 1356, 3721 |
| abstract_inverted_index.thereof. | 2238 |
| abstract_inverted_index.thought. | 1175 |
| abstract_inverted_index.together | 737, 4317 |
| abstract_inverted_index.training | 2087 |
| abstract_inverted_index.valuable | 1172 |
| abstract_inverted_index.ventures | 1885 |
| abstract_inverted_index.workings | 918 |
| abstract_inverted_index.'between' | 1565 |
| abstract_inverted_index.'collect, | 1574 |
| abstract_inverted_index.'human'), | 1091 |
| abstract_inverted_index.'prompts' | 1162 |
| abstract_inverted_index.(Chalmers | 454 |
| abstract_inverted_index.ChatGPT's | 76 |
| abstract_inverted_index.Coca-Cola | 366 |
| abstract_inverted_index.GAI-based | 1253 |
| abstract_inverted_index.GAI-laden | 772, 927 |
| abstract_inverted_index.Greenwood | 1220 |
| abstract_inverted_index.Instacart | 354 |
| abstract_inverted_index.Problems' | 2137 |
| abstract_inverted_index.Recently, | 75, 3160 |
| abstract_inverted_index.[airline] | 379 |
| abstract_inverted_index.[beverage | 367 |
| abstract_inverted_index.[language | 381 |
| abstract_inverted_index.addition, | 1217 |
| abstract_inverted_index.analysing | 1138 |
| abstract_inverted_index.analysis, | 126 |
| abstract_inverted_index.attitudes | 2146 |
| abstract_inverted_index.available | 1637 |
| abstract_inverted_index.between'. | 1878 |
| abstract_inverted_index.business, | 1482 |
| abstract_inverted_index.challenge | 1209 |
| abstract_inverted_index.committed | 1290 |
| abstract_inverted_index.contexts. | 202 |
| abstract_inverted_index.criteria, | 1950 |
| abstract_inverted_index.currently | 977 |
| abstract_inverted_index.decisions | 851, 1942, 2841 |
| abstract_inverted_index.dedicated | 308 |
| abstract_inverted_index.depending | 2404, 3183 |
| abstract_inverted_index.different | 21, 704, 1884, 1937, 3769 |
| abstract_inverted_index.discourse | 36, 497 |
| abstract_inverted_index.discovery | 1338 |
| abstract_inverted_index.disposal. | 1641 |
| abstract_inverted_index.dystopian | 2143 |
| abstract_inverted_index.economic, | 995 |
| abstract_inverted_index.educators | 261 |
| abstract_inverted_index.effective | 1161, 4409 |
| abstract_inverted_index.emergence | 1034, 2967, 3035, 3562, 4007, 4325 |
| abstract_inverted_index.emphasize | 1628 |
| abstract_inverted_index.encompass | 42, 964 |
| abstract_inverted_index.enriching | 1353 |
| abstract_inverted_index.establish | 2324 |
| abstract_inverted_index.etymology | 1498, 1541 |
| abstract_inverted_index.examining | 940 |
| abstract_inverted_index.exclaimed | 2488 |
| abstract_inverted_index.expansive | 960 |
| abstract_inverted_index.exploring | 246, 2901, 3730 |
| abstract_inverted_index.extensive | 239 |
| abstract_inverted_index.feelings, | 1097 |
| abstract_inverted_index.fostering | 1292 |
| abstract_inverted_index.functions | 841 |
| abstract_inverted_index.highlight | 1196 |
| abstract_inverted_index.hopefully | 404 |
| abstract_inverted_index.imagining | 2450 |
| abstract_inverted_index.inability | 872 |
| abstract_inverted_index.including | 2358, 3319 |
| abstract_inverted_index.indicates | 529 |
| abstract_inverted_index.influence | 2085, 2748, 2760, 2922 |
| abstract_inverted_index.informing | 2049 |
| abstract_inverted_index.instance, | 1676, 1961, 4280 |
| abstract_inverted_index.intensive | 657 |
| abstract_inverted_index.judgement | 2051 |
| abstract_inverted_index.knowledge | 620, 1246, 1261, 1461, 1710, 2333 |
| abstract_inverted_index.landscape | 1384 |
| abstract_inverted_index.learning, | 55 |
| abstract_inverted_index.locations | 906 |
| abstract_inverted_index.marketers | 1643 |
| abstract_inverted_index.matters'. | 953 |
| abstract_inverted_index.mobilized | 2072 |
| abstract_inverted_index.negative, | 2559 |
| abstract_inverted_index.pessimist | 2030 |
| abstract_inverted_index.phenomena | 800, 1530 |
| abstract_inverted_index.political | 996, 4085 |
| abstract_inverted_index.potential | 26, 248, 567, 1158, 2681, 4163 |
| abstract_inverted_index.practice, | 413, 1415 |
| abstract_inverted_index.pre-given | 2230 |
| abstract_inverted_index.presented | 2482 |
| abstract_inverted_index.principle | 1012 |
| abstract_inverted_index.problems, | 2114 |
| abstract_inverted_index.prominent | 599 |
| abstract_inverted_index.provider] | 362, 365 |
| abstract_inverted_index.questions | 1202, 4364, 4417, 4488, 4563 |
| abstract_inverted_index.real-time | 132, 160 |
| abstract_inverted_index.recognize | 1003, 3686, 4176 |
| abstract_inverted_index.refining, | 683 |
| abstract_inverted_index.reimagine | 2416 |
| abstract_inverted_index.relations | 889 |
| abstract_inverted_index.religion. | 2374 |
| abstract_inverted_index.represent | 1720 |
| abstract_inverted_index.research, | 1128 |
| abstract_inverted_index.research. | 1151 |
| abstract_inverted_index.resources | 2215 |
| abstract_inverted_index.scenarios | 1971 |
| abstract_inverted_index.scholars, | 489, 4126 |
| abstract_inverted_index.scrutiny, | 711 |
| abstract_inverted_index.security, | 168 |
| abstract_inverted_index.services] | 386 |
| abstract_inverted_index.signalled | 1531 |
| abstract_inverted_index.societies | 268, 3576, 4201 |
| abstract_inverted_index.solutions | 2388 |
| abstract_inverted_index.sometimes | 153 |
| abstract_inverted_index.speculate | 1517 |
| abstract_inverted_index.spotlight | 708 |
| abstract_inverted_index.symposium | 623, 1315 |
| abstract_inverted_index.systems). | 997 |
| abstract_inverted_index.theories. | 541 |
| abstract_inverted_index.tracking, | 128 |
| abstract_inverted_index.tradition | 687 |
| abstract_inverted_index.workplace | 731 |
| abstract_inverted_index.'business' | 230 |
| abstract_inverted_index.(Quattrone | 2138 |
| abstract_inverted_index.(including | 1089 |
| abstract_inverted_index.Foucault's | 2330 |
| abstract_inverted_index.Industrial | 2027 |
| abstract_inverted_index.Jarvenpaa, | 447 |
| abstract_inverted_index.MacKenzie, | 929, 3155, 3336 |
| abstract_inverted_index.Management | 275, 596 |
| abstract_inverted_index.Mastercard | 384 |
| abstract_inverted_index.Meanwhile, | 293 |
| abstract_inverted_index.Microsoft, | 2480 |
| abstract_inverted_index.Quattrone, | 790, 1492 |
| abstract_inverted_index.Salesforce | 357 |
| abstract_inverted_index.[financial | 385 |
| abstract_inverted_index.[logistics | 364 |
| abstract_inverted_index.advocating | 948 |
| abstract_inverted_index.artificial | 11, 227, 1593, 3162, 4354 |
| abstract_inverted_index.associated | 648, 3652, 3704, 3771 |
| abstract_inverted_index.attempting | 813 |
| abstract_inverted_index.attracting | 205 |
| abstract_inverted_index.available, | 2311 |
| abstract_inverted_index.boundaries | 171 |
| abstract_inverted_index.burgeoning | 475 |
| abstract_inverted_index.capacities | 70 |
| abstract_inverted_index.challenges | 396, 511, 1257, 3502, 4130 |
| abstract_inverted_index.collection | 1316 |
| abstract_inverted_index.collective | 59, 1458, 1701, 2719 |
| abstract_inverted_index.comparison | 757 |
| abstract_inverted_index.complicate | 164 |
| abstract_inverted_index.comprehend | 2506 |
| abstract_inverted_index.conceiving | 1831 |
| abstract_inverted_index.conceptual | 754, 3723 |
| abstract_inverted_index.considered | 1074, 3610 |
| abstract_inverted_index.constructs | 1211 |
| abstract_inverted_index.contextual | 937, 1028 |
| abstract_inverted_index.contribute | 615, 1031, 1221, 1455, 2793 |
| abstract_inverted_index.creativity | 826, 1849 |
| abstract_inverted_index.deficiency | 507 |
| abstract_inverted_index.definitive | 1322 |
| abstract_inverted_index.dependent. | 2008 |
| abstract_inverted_index.determined | 2234 |
| abstract_inverted_index.direction, | 591 |
| abstract_inverted_index.discussion | 283, 576, 4462 |
| abstract_inverted_index.disruptive | 69 |
| abstract_inverted_index.documented | 342 |
| abstract_inverted_index.emergence. | 789 |
| abstract_inverted_index.encourages | 859 |
| abstract_inverted_index.enterprise | 2099 |
| abstract_inverted_index.enthusiasm | 17 |
| abstract_inverted_index.evaluating | 192 |
| abstract_inverted_index.experience | 1122, 3422 |
| abstract_inverted_index.explaining | 521 |
| abstract_inverted_index.extending, | 1372 |
| abstract_inverted_index.facilitate | 2607, 4408 |
| abstract_inverted_index.first-hand | 1121 |
| abstract_inverted_index.frameworks | 1377 |
| abstract_inverted_index.functions, | 255 |
| abstract_inverted_index.generating | 1149 |
| abstract_inverted_index.generative | 10, 1592, 3161, 3528, 4353 |
| abstract_inverted_index.governance | 1483, 2999, 3138 |
| abstract_inverted_index.hopefully, | 1851 |
| abstract_inverted_index.human-like | 1088 |
| abstract_inverted_index.humankind. | 1993 |
| abstract_inverted_index.illuminate | 933 |
| abstract_inverted_index.imperative | 776 |
| abstract_inverted_index.importance | 935 |
| abstract_inverted_index.in-between | 2202 |
| abstract_inverted_index.integrates | 1054 |
| abstract_inverted_index.intentions | 1099, 2772 |
| abstract_inverted_index.invaluable | 1329 |
| abstract_inverted_index.inventions | 2431 |
| abstract_inverted_index.landscape. | 33, 182 |
| abstract_inverted_index.leveraging | 1160 |
| abstract_inverted_index.lifestyle] | 353 |
| abstract_inverted_index.literature | 1134 |
| abstract_inverted_index.management | 32, 201, 254, 260, 291, 331, 414, 609, 641, 691, 1308, 1355, 1409, 4168 |
| abstract_inverted_index.multimodal | 2060 |
| abstract_inverted_index.newspaper, | 2549 |
| abstract_inverted_index.originates | 2345 |
| abstract_inverted_index.phenomena, | 924 |
| abstract_inverted_index.phenomenon | 1363 |
| abstract_inverted_index.potential, | 2591 |
| abstract_inverted_index.practices. | 332, 1410 |
| abstract_inverted_index.predictive | 1630, 1698 |
| abstract_inverted_index.presuppose | 1713 |
| abstract_inverted_index.prevailing | 496 |
| abstract_inverted_index.processing | 375 |
| abstract_inverted_index.production | 1247, 1259, 1711, 3071 |
| abstract_inverted_index.productive | 2244 |
| abstract_inverted_index.relational | 721, 882, 1243 |
| abstract_inverted_index.repertoire | 2068 |
| abstract_inverted_index.rethinking | 861 |
| abstract_inverted_index.scenarios, | 1917 |
| abstract_inverted_index.solutions; | 1323 |
| abstract_inverted_index.speculate, | 2300 |
| abstract_inverted_index.stimulated | 1360 |
| abstract_inverted_index.strategies | 1436 |
| abstract_inverted_index.surprises. | 1792 |
| abstract_inverted_index.surprising | 1538 |
| abstract_inverted_index.symposium, | 1451 |
| abstract_inverted_index.techniques | 1716, 2380 |
| abstract_inverted_index.technology | 401, 2077, 3322, 3433, 3743, 3761, 3897, 3926, 4020, 4079, 4401, 4446 |
| abstract_inverted_index.understand | 1467, 3290, 3294, 3559, 3596, 3613, 3727, 3758, 4096 |
| abstract_inverted_index.unverified | 154 |
| abstract_inverted_index.workplace, | 773, 947 |
| abstract_inverted_index.workplace. | 766, 928 |
| abstract_inverted_index.'generative | 226 |
| abstract_inverted_index.(Quattrone, | 2461 |
| abstract_inverted_index.GAI-driven. | 1388 |
| abstract_inverted_index.GAI-related | 799 |
| abstract_inverted_index.Ravishankar | 1118 |
| abstract_inverted_index.[e-commerce | 355 |
| abstract_inverted_index.acknowledge | 2160 |
| abstract_inverted_index.advancement | 90 |
| abstract_inverted_index.alternative | 1929 |
| abstract_inverted_index.apocalyptic | 1968 |
| abstract_inverted_index.application | 583 |
| abstract_inverted_index.boundaries, | 1350 |
| abstract_inverted_index.businesses, | 117 |
| abstract_inverted_index.businesses. | 95 |
| abstract_inverted_index.challenges, | 2118 |
| abstract_inverted_index.challenging | 1351 |
| abstract_inverted_index.classifying | 2379 |
| abstract_inverted_index.commendable | 461 |
| abstract_inverted_index.completely) | 2019 |
| abstract_inverted_index.completely, | 2037 |
| abstract_inverted_index.consultants | 296 |
| abstract_inverted_index.coordinated | 1283 |
| abstract_inverted_index.data-driven | 133 |
| abstract_inverted_index.definitions | 1062, 4595 |
| abstract_inverted_index.developing, | 1371 |
| abstract_inverted_index.directions. | 1490 |
| abstract_inverted_index.disappoint. | 1548 |
| abstract_inverted_index.disciplines | 442 |
| abstract_inverted_index.discussions | 487, 658, 1367, 1390 |
| abstract_inverted_index.emphasizing | 1403 |
| abstract_inverted_index.employment, | 1481 |
| abstract_inverted_index.encapsulate | 794 |
| abstract_inverted_index.established | 1210 |
| abstract_inverted_index.establishes | 911 |
| abstract_inverted_index.etymologies | 1581 |
| abstract_inverted_index.examination | 472, 974 |
| abstract_inverted_index.exploration | 1336, 2609 |
| abstract_inverted_index.foundation. | 505 |
| abstract_inverted_index.generations | 895, 1752 |
| abstract_inverted_index.generative. | 2469 |
| abstract_inverted_index.human–GAI | 746, 1114, 1183, 1206, 1237 |
| abstract_inverted_index.illustrates | 335, 3749 |
| abstract_inverted_index.imaginaries | 969, 3411, 3521, 3553, 3770, 3973, 4101, 4139, 4209 |
| abstract_inverted_index.imagination | 1847, 2303 |
| abstract_inverted_index.information | 80, 147, 3321, 4386 |
| abstract_inverted_index.innovations | 45, 3239, 4194, 4281 |
| abstract_inverted_index.integrating | 1432 |
| abstract_inverted_index.integration | 324, 3732 |
| abstract_inverted_index.intricacies | 647, 1026 |
| abstract_inverted_index.introducing | 423 |
| abstract_inverted_index.invariably, | 1683 |
| abstract_inverted_index.inventories | 2382, 2426 |
| abstract_inverted_index.literature. | 215, 346 |
| abstract_inverted_index.management, | 1402 |
| abstract_inverted_index.necessitate | 185 |
| abstract_inverted_index.operations, | 1438 |
| abstract_inverted_index.perspective | 780, 1244, 3265 |
| abstract_inverted_index.phenomenon. | 629 |
| abstract_inverted_index.possibility | 1829, 3539 |
| abstract_inverted_index.potentially | 2314, 2864 |
| abstract_inverted_index.quantities. | 2294 |
| abstract_inverted_index.recognition | 869 |
| abstract_inverted_index.recombining | 2393 |
| abstract_inverted_index.reflection. | 828, 1858 |
| abstract_inverted_index.reliability | 144 |
| abstract_inverted_index.reminiscent | 2252 |
| abstract_inverted_index.repository, | 240 |
| abstract_inverted_index.responsible | 189, 1404, 1445, 1489 |
| abstract_inverted_index.significant | 89, 481 |
| abstract_inverted_index.speculation | 1856 |
| abstract_inverted_index.stimulating | 1297 |
| abstract_inverted_index.surrounding | 65, 322 |
| abstract_inverted_index.sustainable | 1406, 1443, 1487 |
| abstract_inverted_index.theoretical | 504, 558, 619, 661, 710, 1376, 2937, 3264, 4590 |
| abstract_inverted_index.toothbrush, | 1654 |
| abstract_inverted_index.traditional | 759, 3902 |
| abstract_inverted_index.up-to-date, | 107 |
| abstract_inverted_index.workplaces. | 724 |
| abstract_inverted_index.'Artificial' | 1549 |
| abstract_inverted_index.'artificial' | 1543, 1816, 1824 |
| abstract_inverted_index.(Carruthers, | 2419 |
| abstract_inverted_index.(Orlikowski, | 2222 |
| abstract_inverted_index.Nonetheless, | 1152 |
| abstract_inverted_index.Revolutions, | 2028 |
| abstract_inverted_index.[cloud-based | 358 |
| abstract_inverted_index.anticipation | 60 |
| abstract_inverted_index.application] | 356, 383 |
| abstract_inverted_index.applications | 249, 338 |
| abstract_inverted_index.appropriate, | 1440 |
| abstract_inverted_index.availability | 1769 |
| abstract_inverted_index.calculation, | 2410 |
| abstract_inverted_index.capabilities | 197, 1166 |
| abstract_inverted_index.characterize | 1973, 2350 |
| abstract_inverted_index.complexities | 1430, 2510 |
| abstract_inverted_index.constructed, | 2285 |
| abstract_inverted_index.construction | 839 |
| abstract_inverted_index.contemporary | 328, 2352 |
| abstract_inverted_index.contextually | 108 |
| abstract_inverted_index.conventional | 1061, 1349 |
| abstract_inverted_index.correlations | 2564 |
| abstract_inverted_index.development. | 1037 |
| abstract_inverted_index.discussions, | 309 |
| abstract_inverted_index.empirically. | 1215 |
| abstract_inverted_index.etymological | 855 |
| abstract_inverted_index.examinations | 1018 |
| abstract_inverted_index.fascinations | 1625 |
| abstract_inverted_index.generations, | 903 |
| abstract_inverted_index.highlighting | 1156 |
| abstract_inverted_index.illustrating | 751, 3631 |
| abstract_inverted_index.imaginations | 1702 |
| abstract_inverted_index.implications | 93, 258 |
| abstract_inverted_index.improvements | 121 |
| abstract_inverted_index.increasingly | 1636, 1760 |
| abstract_inverted_index.individuals, | 1066 |
| abstract_inverted_index.information, | 110 |
| abstract_inverted_index.intellectual | 433 |
| abstract_inverted_index.intelligence | 12, 1594, 1861, 3163, 4355 |
| abstract_inverted_index.interactions | 174, 1238, 1275 |
| abstract_inverted_index.introduction | 726, 3817, 4333 |
| abstract_inverted_index.multifaceted | 318 |
| abstract_inverted_index.perspectives | 1359 |
| abstract_inverted_index.practitioner | 214, 345 |
| abstract_inverted_index.predictions. | 1735 |
| abstract_inverted_index.redeveloping | 539 |
| abstract_inverted_index.relationship | 360, 3085 |
| abstract_inverted_index.scrutinizing | 263 |
| abstract_inverted_index.smartwatches | 2081 |
| abstract_inverted_index.specifically | 1129 |
| abstract_inverted_index.speculations | 1586 |
| abstract_inverted_index.speculative, | 500 |
| abstract_inverted_index.stakeholders | 22 |
| abstract_inverted_index.technologies | 976, 1085, 2221, 2747, 2765, 3401, 3425, 3463, 3556, 3565, 3654, 3694, 3735, 3748, 3984, 4135, 4221, 4255 |
| abstract_inverted_index.theorization | 637 |
| abstract_inverted_index.transcribing | 1136 |
| abstract_inverted_index.utilization. | 853 |
| abstract_inverted_index.'management', | 232 |
| abstract_inverted_index.Additionally, | 159 |
| abstract_inverted_index.Faulconbridge | 1178 |
| abstract_inverted_index.Relationality | 909 |
| abstract_inverted_index.advertisement | 1685 |
| abstract_inverted_index.applications. | 266 |
| abstract_inverted_index.approximately | 234 |
| abstract_inverted_index.collaborative | 631 |
| abstract_inverted_index.compositional | 1835 |
| abstract_inverted_index.construction. | 2212 |
| abstract_inverted_index.contemplating | 256 |
| abstract_inverted_index.contributions | 755, 1312 |
| abstract_inverted_index.deterministic | 783 |
| abstract_inverted_index.entrepreneurs | 1880, 3618 |
| abstract_inverted_index.incorporation | 988, 4212 |
| abstract_inverted_index.institutional | 990 |
| abstract_inverted_index.intelligence' | 228 |
| abstract_inverted_index.intelligence, | 1777 |
| abstract_inverted_index.interactions. | 115 |
| abstract_inverted_index.long-standing | 686 |
| abstract_inverted_index.opportunities | 62, 394 |
| abstract_inverted_index.perspectives, | 469 |
| abstract_inverted_index.possibilities | 451 |
| abstract_inverted_index.practitioners | 294, 490, 1422 |
| abstract_inverted_index.predetermined | 846 |
| abstract_inverted_index.proliferation | 485, 4294 |
| abstract_inverted_index.quasi-magical | 1697 |
| abstract_inverted_index.relationships | 1029, 1184, 1191 |
| abstract_inverted_index.sense-making, | 915 |
| abstract_inverted_index.technological | 265, 3623, 4123 |
| abstract_inverted_index.technologies, | 972, 983, 2512, 3679 |
| abstract_inverted_index.technologies. | 74 |
| abstract_inverted_index.theoretically | 1213 |
| abstract_inverted_index.underpinnings | 559 |
| abstract_inverted_index.understanding | 938, 1295, 4190, 4229 |
| abstract_inverted_index.unprecedented | 2455 |
| abstract_inverted_index.'Intelligence' | 1561 |
| abstract_inverted_index.'intelligence' | 1545 |
| abstract_inverted_index.Zapata-Phelan, | 696 |
| abstract_inverted_index.considerations | 321, 1398 |
| abstract_inverted_index.digitalization | 287 |
| abstract_inverted_index.idiosyncratic, | 1016 |
| abstract_inverted_index.ontologically. | 867 |
| abstract_inverted_index.organizational | 450 |
| abstract_inverted_index.paradoxically, | 1723 |
| abstract_inverted_index.responsibility | 1101, 1230, 2915, 4546 |
| abstract_inverted_index.transformative | 67 |
| abstract_inverted_index.uncoordinated. | 1285 |
| abstract_inverted_index.understandings | 760 |
| abstract_inverted_index.well-ingrained | 1707 |
| abstract_inverted_index.[confectionary] | 372 |
| abstract_inverted_index.accountability. | 1266, 2828, 2918 |
| abstract_inverted_index.decision-making | 1938, 4456, 4477 |
| abstract_inverted_index.reconceptualize | 719 |
| abstract_inverted_index.person-to-person | 740 |
| abstract_inverted_index.problem-solving. | 134 |
| abstract_inverted_index.professionalism. | 1194 |
| abstract_inverted_index.journal/calendar. | 2551 |
| abstract_inverted_index.producer–consumer | 1190 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5084581187 |
| countries_distinct_count | 9 |
| institutions_distinct_count | 18 |
| corresponding_institution_ids | https://openalex.org/I126231945 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.99832 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |