THiNK: Can Large Language Models Think-aloud? Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.20184
Assessing higher-order thinking skills in large language models (LLMs) remains a fundamental challenge, especially in tasks that go beyond surface-level accuracy. In this work, we propose THiNK (Testing Higher-order Notion of Knowledge), a multi-agent, feedback-driven evaluation framework grounded in Bloom's Taxonomy. THiNK frames reasoning assessment as an iterative task of problem generation, critique, and revision, encouraging LLMs to think-aloud through step-by-step reflection and refinement. This enables a systematic evaluation of both lower-order (e.g., remember, understand) and higher-order (e.g., evaluate, create) thinking skills. We apply THiNK to seven state-of-the-art LLMs and perform a detailed cognitive analysis of their outputs. Results reveal that while models reliably perform lower-order categories well, they struggle with applying knowledge in realistic contexts and exhibit limited abstraction. Structured feedback loops significantly improve reasoning performance, particularly in higher-order thinking. Qualitative evaluations further confirm that THiNK-guided outputs better align with domain logic and problem structure. The code of our framework provides a scalable methodology for probing and enhancing LLM reasoning, offering new directions for evaluation grounded in learning science, which is available at our GitHub repository.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.20184
- https://arxiv.org/pdf/2505.20184
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414588292
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414588292Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.20184Digital Object Identifier
- Title
-
THiNK: Can Large Language Models Think-aloud?Work title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-26Full publication date if available
- Authors
-
Yongan Yu, Mengqian Wu, Yi‐Chung Lin, Nikki G. LobczowskiList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.20184Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.20184Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.20184Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414588292 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.20184 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.20184 |
| ids.openalex | https://openalex.org/W4414588292 |
| fwci | |
| type | preprint |
| title | THiNK: Can Large Language Models Think-aloud? |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7766000032424927 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.20184 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.20184 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.20184 |
| locations[1].id | doi:10.48550/arxiv.2505.20184 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.20184 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5112768031 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4160-9344 |
| authorships[0].author.display_name | Yongan Yu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yu, Yongan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5111125757 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mengqian Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wu, Mengqian |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5058441595 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0352-2694 |
| authorships[2].author.display_name | Yi‐Chung Lin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lin, Yiran |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5005519512 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9018-2957 |
| authorships[3].author.display_name | Nikki G. Lobczowski |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lobczowski, Nikki G. |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.20184 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | THiNK: Can Large Language Models Think-aloud? |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7766000032424927 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.20184 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.20184 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.20184 |
| primary_location.id | pmh:oai:arXiv.org:2505.20184 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.20184 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.20184 |
| publication_date | 2025-05-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 32, 66, 91, 152 |
| abstract_inverted_index.In | 21 |
| abstract_inverted_index.We | 82 |
| abstract_inverted_index.an | 46 |
| abstract_inverted_index.as | 45 |
| abstract_inverted_index.at | 173 |
| abstract_inverted_index.go | 17 |
| abstract_inverted_index.in | 4, 14, 38, 113, 128, 167 |
| abstract_inverted_index.is | 171 |
| abstract_inverted_index.of | 30, 49, 69, 95, 148 |
| abstract_inverted_index.to | 57, 85 |
| abstract_inverted_index.we | 24 |
| abstract_inverted_index.LLM | 159 |
| abstract_inverted_index.The | 146 |
| abstract_inverted_index.and | 53, 62, 75, 89, 116, 143, 157 |
| abstract_inverted_index.for | 155, 164 |
| abstract_inverted_index.new | 162 |
| abstract_inverted_index.our | 149, 174 |
| abstract_inverted_index.LLMs | 56, 88 |
| abstract_inverted_index.This | 64 |
| abstract_inverted_index.both | 70 |
| abstract_inverted_index.code | 147 |
| abstract_inverted_index.task | 48 |
| abstract_inverted_index.that | 16, 100, 135 |
| abstract_inverted_index.they | 108 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.with | 110, 140 |
| abstract_inverted_index.THiNK | 26, 41, 84 |
| abstract_inverted_index.align | 139 |
| abstract_inverted_index.apply | 83 |
| abstract_inverted_index.large | 5 |
| abstract_inverted_index.logic | 142 |
| abstract_inverted_index.loops | 122 |
| abstract_inverted_index.seven | 86 |
| abstract_inverted_index.tasks | 15 |
| abstract_inverted_index.their | 96 |
| abstract_inverted_index.well, | 107 |
| abstract_inverted_index.which | 170 |
| abstract_inverted_index.while | 101 |
| abstract_inverted_index.work, | 23 |
| abstract_inverted_index.(LLMs) | 8 |
| abstract_inverted_index.(e.g., | 72, 77 |
| abstract_inverted_index.GitHub | 175 |
| abstract_inverted_index.Notion | 29 |
| abstract_inverted_index.better | 138 |
| abstract_inverted_index.beyond | 18 |
| abstract_inverted_index.domain | 141 |
| abstract_inverted_index.frames | 42 |
| abstract_inverted_index.models | 7, 102 |
| abstract_inverted_index.reveal | 99 |
| abstract_inverted_index.skills | 3 |
| abstract_inverted_index.Bloom's | 39 |
| abstract_inverted_index.Results | 98 |
| abstract_inverted_index.confirm | 134 |
| abstract_inverted_index.create) | 79 |
| abstract_inverted_index.enables | 65 |
| abstract_inverted_index.exhibit | 117 |
| abstract_inverted_index.further | 133 |
| abstract_inverted_index.improve | 124 |
| abstract_inverted_index.limited | 118 |
| abstract_inverted_index.outputs | 137 |
| abstract_inverted_index.perform | 90, 104 |
| abstract_inverted_index.probing | 156 |
| abstract_inverted_index.problem | 50, 144 |
| abstract_inverted_index.propose | 25 |
| abstract_inverted_index.remains | 9 |
| abstract_inverted_index.skills. | 81 |
| abstract_inverted_index.through | 59 |
| abstract_inverted_index.(Testing | 27 |
| abstract_inverted_index.analysis | 94 |
| abstract_inverted_index.applying | 111 |
| abstract_inverted_index.contexts | 115 |
| abstract_inverted_index.detailed | 92 |
| abstract_inverted_index.feedback | 121 |
| abstract_inverted_index.grounded | 37, 166 |
| abstract_inverted_index.language | 6 |
| abstract_inverted_index.learning | 168 |
| abstract_inverted_index.offering | 161 |
| abstract_inverted_index.outputs. | 97 |
| abstract_inverted_index.provides | 151 |
| abstract_inverted_index.reliably | 103 |
| abstract_inverted_index.scalable | 153 |
| abstract_inverted_index.science, | 169 |
| abstract_inverted_index.struggle | 109 |
| abstract_inverted_index.thinking | 2, 80 |
| abstract_inverted_index.Assessing | 0 |
| abstract_inverted_index.Taxonomy. | 40 |
| abstract_inverted_index.accuracy. | 20 |
| abstract_inverted_index.available | 172 |
| abstract_inverted_index.cognitive | 93 |
| abstract_inverted_index.critique, | 52 |
| abstract_inverted_index.enhancing | 158 |
| abstract_inverted_index.evaluate, | 78 |
| abstract_inverted_index.framework | 36, 150 |
| abstract_inverted_index.iterative | 47 |
| abstract_inverted_index.knowledge | 112 |
| abstract_inverted_index.realistic | 114 |
| abstract_inverted_index.reasoning | 43, 125 |
| abstract_inverted_index.remember, | 73 |
| abstract_inverted_index.revision, | 54 |
| abstract_inverted_index.thinking. | 130 |
| abstract_inverted_index.Structured | 120 |
| abstract_inverted_index.assessment | 44 |
| abstract_inverted_index.categories | 106 |
| abstract_inverted_index.challenge, | 12 |
| abstract_inverted_index.directions | 163 |
| abstract_inverted_index.especially | 13 |
| abstract_inverted_index.evaluation | 35, 68, 165 |
| abstract_inverted_index.reasoning, | 160 |
| abstract_inverted_index.reflection | 61 |
| abstract_inverted_index.structure. | 145 |
| abstract_inverted_index.systematic | 67 |
| abstract_inverted_index.Knowledge), | 31 |
| abstract_inverted_index.Qualitative | 131 |
| abstract_inverted_index.encouraging | 55 |
| abstract_inverted_index.evaluations | 132 |
| abstract_inverted_index.fundamental | 11 |
| abstract_inverted_index.generation, | 51 |
| abstract_inverted_index.lower-order | 71, 105 |
| abstract_inverted_index.methodology | 154 |
| abstract_inverted_index.refinement. | 63 |
| abstract_inverted_index.repository. | 176 |
| abstract_inverted_index.think-aloud | 58 |
| abstract_inverted_index.understand) | 74 |
| abstract_inverted_index.Higher-order | 28 |
| abstract_inverted_index.THiNK-guided | 136 |
| abstract_inverted_index.abstraction. | 119 |
| abstract_inverted_index.higher-order | 1, 76, 129 |
| abstract_inverted_index.multi-agent, | 33 |
| abstract_inverted_index.particularly | 127 |
| abstract_inverted_index.performance, | 126 |
| abstract_inverted_index.step-by-step | 60 |
| abstract_inverted_index.significantly | 123 |
| abstract_inverted_index.surface-level | 19 |
| abstract_inverted_index.feedback-driven | 34 |
| abstract_inverted_index.state-of-the-art | 87 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |