Thinning a Wishart Random Matrix Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.09957
Recent work has explored data thinning, a generalization of sample splitting that involves decomposing a (possibly matrix-valued) random variable into independent components. In the special case of a $n \times p$ random matrix with independent and identically distributed $N_p(μ, Σ)$ rows, Dharamshi et al. (2024a) provides a comprehensive analysis of the settings in which thinning is or is not possible: briefly, if $Σ$ is unknown, then one can thin provided that $n>1$. However, in some situations a data analyst may not have direct access to the data itself. For example, to preserve individuals' privacy, a data bank may provide only summary statistics such as the sample mean and sample covariance matrix. While the sample mean follows a Gaussian distribution, the sample covariance follows (up to scaling) a Wishart distribution, for which no thinning strategies have yet been proposed. In this note, we fill this gap: we show that it is possible to generate two independent data matrices with independent $N_p(μ, Σ)$ rows, based only on the sample mean and sample covariance matrix. These independent data matrices can either be used directly within a train-test paradigm, or can be used to derive independent summary statistics. Furthermore, they can be recombined to yield the original sample mean and sample covariance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.09957
- https://arxiv.org/pdf/2502.09957
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407632472
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407632472Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.09957Digital Object Identifier
- Title
-
Thinning a Wishart Random MatrixWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-14Full publication date if available
- Authors
-
Ameer Dharamshi, Anna Neufeld, Lucy L. Gao, Daniela Witten, Jacob BienList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.09957Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.09957Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.09957Direct OA link when available
- Concepts
-
Wishart distribution, Thinning, Matrix (chemical analysis), Mathematics, Statistics, Chemistry, Geography, Chromatography, Multivariate statistics, ForestryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407632472 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.09957 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.09957 |
| ids.openalex | https://openalex.org/W4407632472 |
| fwci | |
| type | preprint |
| title | Thinning a Wishart Random Matrix |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.05339999869465828 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Methods and Mixture Models |
| topics[1].id | https://openalex.org/T12261 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.05249999836087227 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Statistical Mechanics and Entropy |
| topics[2].id | https://openalex.org/T11063 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.05130000039935112 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Rough Sets and Fuzzy Logic |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C33962027 |
| concepts[0].level | 3 |
| concepts[0].score | 0.849687933921814 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1930697 |
| concepts[0].display_name | Wishart distribution |
| concepts[1].id | https://openalex.org/C2781353100 |
| concepts[1].level | 2 |
| concepts[1].score | 0.47500717639923096 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1266974 |
| concepts[1].display_name | Thinning |
| concepts[2].id | https://openalex.org/C106487976 |
| concepts[2].level | 2 |
| concepts[2].score | 0.46041139960289 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[2].display_name | Matrix (chemical analysis) |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4565046429634094 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.25182878971099854 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C185592680 |
| concepts[5].level | 0 |
| concepts[5].score | 0.09571424126625061 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[5].display_name | Chemistry |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0913386344909668 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C43617362 |
| concepts[7].level | 1 |
| concepts[7].score | 0.052126020193099976 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[7].display_name | Chromatography |
| concepts[8].id | https://openalex.org/C161584116 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1952580 |
| concepts[8].display_name | Multivariate statistics |
| concepts[9].id | https://openalex.org/C97137747 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q38112 |
| concepts[9].display_name | Forestry |
| keywords[0].id | https://openalex.org/keywords/wishart-distribution |
| keywords[0].score | 0.849687933921814 |
| keywords[0].display_name | Wishart distribution |
| keywords[1].id | https://openalex.org/keywords/thinning |
| keywords[1].score | 0.47500717639923096 |
| keywords[1].display_name | Thinning |
| keywords[2].id | https://openalex.org/keywords/matrix |
| keywords[2].score | 0.46041139960289 |
| keywords[2].display_name | Matrix (chemical analysis) |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.4565046429634094 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.25182878971099854 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/chemistry |
| keywords[5].score | 0.09571424126625061 |
| keywords[5].display_name | Chemistry |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.0913386344909668 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/chromatography |
| keywords[7].score | 0.052126020193099976 |
| keywords[7].display_name | Chromatography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.09957 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.09957 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.09957 |
| locations[1].id | doi:10.48550/arxiv.2502.09957 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.09957 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003007011 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5505-4765 |
| authorships[0].author.display_name | Ameer Dharamshi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dharamshi, Ameer |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085126721 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7638-0861 |
| authorships[1].author.display_name | Anna Neufeld |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Neufeld, Anna |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5079270469 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6811-0746 |
| authorships[2].author.display_name | Lucy L. Gao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gao, Lucy L. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5031682567 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1764-1184 |
| authorships[3].author.display_name | Daniela Witten |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Witten, Daniela |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5076854744 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jacob Bien |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Bien, Jacob |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.09957 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Thinning a Wishart Random Matrix |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.05339999869465828 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Methods and Mixture Models |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2357280244, https://openalex.org/W4283836740, https://openalex.org/W1573752787, https://openalex.org/W2072657584, https://openalex.org/W2146312983, https://openalex.org/W2389605595, https://openalex.org/W2989655533, https://openalex.org/W2350998906, https://openalex.org/W4396580036 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.09957 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.09957 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.09957 |
| primary_location.id | pmh:oai:arXiv.org:2502.09957 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.09957 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.09957 |
| publication_date | 2025-02-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 14, 27, 46, 76, 94, 116, 126, 182 |
| abstract_inverted_index.$n | 28 |
| abstract_inverted_index.In | 22, 138 |
| abstract_inverted_index.as | 103 |
| abstract_inverted_index.be | 178, 187, 197 |
| abstract_inverted_index.et | 42 |
| abstract_inverted_index.if | 61 |
| abstract_inverted_index.in | 52, 73 |
| abstract_inverted_index.is | 55, 57, 63, 149 |
| abstract_inverted_index.it | 148 |
| abstract_inverted_index.no | 131 |
| abstract_inverted_index.of | 8, 26, 49 |
| abstract_inverted_index.on | 164 |
| abstract_inverted_index.or | 56, 185 |
| abstract_inverted_index.p$ | 30 |
| abstract_inverted_index.to | 84, 90, 124, 151, 189, 199 |
| abstract_inverted_index.we | 141, 145 |
| abstract_inverted_index.(up | 123 |
| abstract_inverted_index.For | 88 |
| abstract_inverted_index.al. | 43 |
| abstract_inverted_index.and | 35, 107, 168, 205 |
| abstract_inverted_index.can | 67, 176, 186, 196 |
| abstract_inverted_index.for | 129 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.may | 79, 97 |
| abstract_inverted_index.not | 58, 80 |
| abstract_inverted_index.one | 66 |
| abstract_inverted_index.the | 23, 50, 85, 104, 112, 119, 165, 201 |
| abstract_inverted_index.two | 153 |
| abstract_inverted_index.yet | 135 |
| abstract_inverted_index.$Σ$ | 62 |
| abstract_inverted_index.bank | 96 |
| abstract_inverted_index.been | 136 |
| abstract_inverted_index.case | 25 |
| abstract_inverted_index.data | 4, 77, 86, 95, 155, 174 |
| abstract_inverted_index.fill | 142 |
| abstract_inverted_index.gap: | 144 |
| abstract_inverted_index.have | 81, 134 |
| abstract_inverted_index.into | 19 |
| abstract_inverted_index.mean | 106, 114, 167, 204 |
| abstract_inverted_index.only | 99, 163 |
| abstract_inverted_index.show | 146 |
| abstract_inverted_index.some | 74 |
| abstract_inverted_index.such | 102 |
| abstract_inverted_index.that | 11, 70, 147 |
| abstract_inverted_index.then | 65 |
| abstract_inverted_index.they | 195 |
| abstract_inverted_index.thin | 68 |
| abstract_inverted_index.this | 139, 143 |
| abstract_inverted_index.used | 179, 188 |
| abstract_inverted_index.with | 33, 157 |
| abstract_inverted_index.work | 1 |
| abstract_inverted_index.Σ)$ | 39, 160 |
| abstract_inverted_index.These | 172 |
| abstract_inverted_index.While | 111 |
| abstract_inverted_index.based | 162 |
| abstract_inverted_index.note, | 140 |
| abstract_inverted_index.rows, | 40, 161 |
| abstract_inverted_index.which | 53, 130 |
| abstract_inverted_index.yield | 200 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.\times | 29 |
| abstract_inverted_index.access | 83 |
| abstract_inverted_index.derive | 190 |
| abstract_inverted_index.direct | 82 |
| abstract_inverted_index.either | 177 |
| abstract_inverted_index.matrix | 32 |
| abstract_inverted_index.random | 17, 31 |
| abstract_inverted_index.sample | 9, 105, 108, 113, 120, 166, 169, 203, 206 |
| abstract_inverted_index.within | 181 |
| abstract_inverted_index.(2024a) | 44 |
| abstract_inverted_index.Wishart | 127 |
| abstract_inverted_index.analyst | 78 |
| abstract_inverted_index.follows | 115, 122 |
| abstract_inverted_index.itself. | 87 |
| abstract_inverted_index.matrix. | 110, 171 |
| abstract_inverted_index.provide | 98 |
| abstract_inverted_index.special | 24 |
| abstract_inverted_index.summary | 100, 192 |
| abstract_inverted_index.$N_p(μ, | 38, 159 |
| abstract_inverted_index.Gaussian | 117 |
| abstract_inverted_index.However, | 72 |
| abstract_inverted_index.analysis | 48 |
| abstract_inverted_index.briefly, | 60 |
| abstract_inverted_index.directly | 180 |
| abstract_inverted_index.example, | 89 |
| abstract_inverted_index.explored | 3 |
| abstract_inverted_index.generate | 152 |
| abstract_inverted_index.involves | 12 |
| abstract_inverted_index.matrices | 156, 175 |
| abstract_inverted_index.original | 202 |
| abstract_inverted_index.possible | 150 |
| abstract_inverted_index.preserve | 91 |
| abstract_inverted_index.privacy, | 93 |
| abstract_inverted_index.provided | 69 |
| abstract_inverted_index.provides | 45 |
| abstract_inverted_index.scaling) | 125 |
| abstract_inverted_index.settings | 51 |
| abstract_inverted_index.thinning | 54, 132 |
| abstract_inverted_index.unknown, | 64 |
| abstract_inverted_index.variable | 18 |
| abstract_inverted_index.$n>1$. | 71 |
| abstract_inverted_index.(possibly | 15 |
| abstract_inverted_index.Dharamshi | 41 |
| abstract_inverted_index.paradigm, | 184 |
| abstract_inverted_index.possible: | 59 |
| abstract_inverted_index.proposed. | 137 |
| abstract_inverted_index.splitting | 10 |
| abstract_inverted_index.thinning, | 5 |
| abstract_inverted_index.covariance | 109, 121, 170 |
| abstract_inverted_index.recombined | 198 |
| abstract_inverted_index.situations | 75 |
| abstract_inverted_index.statistics | 101 |
| abstract_inverted_index.strategies | 133 |
| abstract_inverted_index.train-test | 183 |
| abstract_inverted_index.components. | 21 |
| abstract_inverted_index.covariance. | 207 |
| abstract_inverted_index.decomposing | 13 |
| abstract_inverted_index.distributed | 37 |
| abstract_inverted_index.identically | 36 |
| abstract_inverted_index.independent | 20, 34, 154, 158, 173, 191 |
| abstract_inverted_index.statistics. | 193 |
| abstract_inverted_index.Furthermore, | 194 |
| abstract_inverted_index.individuals' | 92 |
| abstract_inverted_index.comprehensive | 47 |
| abstract_inverted_index.distribution, | 118, 128 |
| abstract_inverted_index.generalization | 7 |
| abstract_inverted_index.matrix-valued) | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |