Three-Way Trade-Off in Multi-Objective Learning: Optimization, Generalization and Conflict-Avoidance Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.20057
Multi-objective learning (MOL) problems often arise in emerging machine learning problems when there are multiple learning criteria, data modalities, or learning tasks. Different from single-objective learning, one of the critical challenges in MOL is the potential conflict among different objectives during the iterative optimization process. Recent works have developed various dynamic weighting algorithms for MOL such as MGDA and its variants, where the central idea is to find an update direction that avoids conflicts among objectives. Albeit its appealing intuition, empirical studies show that dynamic weighting methods may not always outperform static ones. To understand this theory-practical gap, we focus on a new stochastic variant of MGDA - the Multi-objective gradient with Double sampling (MoDo) algorithm, and study the generalization performance of the dynamic weighting-based MoDo and its interplay with optimization through the lens of algorithm stability. Perhaps surprisingly, we find that the key rationale behind MGDA -- updating along conflict-avoidant direction - may hinder dynamic weighting algorithms from achieving the optimal ${\cal O}(1/\sqrt{n})$ population risk, where $n$ is the number of training samples. We further demonstrate the impact of the variability of dynamic weights on the three-way trade-off among optimization, generalization, and conflict avoidance that is unique in MOL. We showcase the generality of our theoretical framework by analyzing other existing stochastic MOL algorithms under the framework. Experiments on various multi-task learning benchmarks are performed to demonstrate the practical applicability. Code is available at https://github.com/heshandevaka/Trade-Off-MOL.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.20057
- https://arxiv.org/pdf/2305.20057
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4379089730
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4379089730Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.20057Digital Object Identifier
- Title
-
Three-Way Trade-Off in Multi-Objective Learning: Optimization, Generalization and Conflict-AvoidanceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-31Full publication date if available
- Authors
-
Lisha Chen, Heshan Fernando, Yiming Ying, Tianyi ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.20057Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.20057Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.20057Direct OA link when available
- Concepts
-
Weighting, Computer science, Machine learning, Generalization, Generality, Artificial intelligence, Stability (learning theory), Mathematical optimization, Algorithm, Mathematics, Psychology, Medicine, Psychotherapist, Mathematical analysis, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4379089730 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.20057 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.20057 |
| ids.openalex | https://openalex.org/W4379089730 |
| fwci | 0.61792241 |
| type | preprint |
| title | Three-Way Trade-Off in Multi-Objective Learning: Optimization, Generalization and Conflict-Avoidance |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10848 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[1].id | https://openalex.org/T12535 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Data Classification |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9713000059127808 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C183115368 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7285357713699341 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[0].display_name | Weighting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6398121118545532 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5842035412788391 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C177148314 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5463403463363647 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[3].display_name | Generalization |
| concepts[4].id | https://openalex.org/C2780767217 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5420442819595337 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5532421 |
| concepts[4].display_name | Generality |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5330760478973389 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C112972136 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4844634532928467 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[6].display_name | Stability (learning theory) |
| concepts[7].id | https://openalex.org/C126255220 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37525853514671326 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[7].display_name | Mathematical optimization |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.357311487197876 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1906048059463501 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C15744967 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0951460599899292 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[10].display_name | Psychology |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C542102704 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[12].display_name | Psychotherapist |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C126838900 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[14].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/weighting |
| keywords[0].score | 0.7285357713699341 |
| keywords[0].display_name | Weighting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6398121118545532 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.5842035412788391 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/generalization |
| keywords[3].score | 0.5463403463363647 |
| keywords[3].display_name | Generalization |
| keywords[4].id | https://openalex.org/keywords/generality |
| keywords[4].score | 0.5420442819595337 |
| keywords[4].display_name | Generality |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5330760478973389 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/stability |
| keywords[6].score | 0.4844634532928467 |
| keywords[6].display_name | Stability (learning theory) |
| keywords[7].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[7].score | 0.37525853514671326 |
| keywords[7].display_name | Mathematical optimization |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.357311487197876 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.1906048059463501 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/psychology |
| keywords[10].score | 0.0951460599899292 |
| keywords[10].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.20057 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.20057 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.20057 |
| locations[1].id | doi:10.48550/arxiv.2305.20057 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.20057 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5091442724 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8980-5275 |
| authorships[0].author.display_name | Lisha Chen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chen, Lisha |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5046658261 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2930-8925 |
| authorships[1].author.display_name | Heshan Fernando |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fernando, Heshan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5048960543 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yiming Ying |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ying, Yiming |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100783471 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5829-051X |
| authorships[3].author.display_name | Tianyi Chen |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chen, Tianyi |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.20057 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Three-Way Trade-Off in Multi-Objective Learning: Optimization, Generalization and Conflict-Avoidance |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10848 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Multi-Objective Optimization Algorithms |
| related_works | https://openalex.org/W2045049461, https://openalex.org/W1978893398, https://openalex.org/W2201908702, https://openalex.org/W4381094582, https://openalex.org/W2369625323, https://openalex.org/W2364579609, https://openalex.org/W1977906818, https://openalex.org/W1522139108, https://openalex.org/W2353528968, https://openalex.org/W2381411913 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.20057 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.20057 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.20057 |
| primary_location.id | pmh:oai:arXiv.org:2305.20057 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.20057 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.20057 |
| publication_date | 2023-05-31 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 107, 152 |
| abstract_inverted_index.a | 101 |
| abstract_inverted_index.-- | 147 |
| abstract_inverted_index.To | 93 |
| abstract_inverted_index.We | 174, 200 |
| abstract_inverted_index.an | 68 |
| abstract_inverted_index.as | 56 |
| abstract_inverted_index.at | 234 |
| abstract_inverted_index.by | 208 |
| abstract_inverted_index.in | 6, 31, 198 |
| abstract_inverted_index.is | 33, 65, 168, 196, 232 |
| abstract_inverted_index.of | 27, 105, 121, 134, 171, 179, 182, 204 |
| abstract_inverted_index.on | 100, 185, 219 |
| abstract_inverted_index.or | 19 |
| abstract_inverted_index.to | 66, 226 |
| abstract_inverted_index.we | 98, 139 |
| abstract_inverted_index.$n$ | 167 |
| abstract_inverted_index.MOL | 32, 54, 213 |
| abstract_inverted_index.and | 58, 116, 126, 192 |
| abstract_inverted_index.are | 13, 224 |
| abstract_inverted_index.for | 53 |
| abstract_inverted_index.its | 59, 77, 127 |
| abstract_inverted_index.key | 143 |
| abstract_inverted_index.may | 87, 153 |
| abstract_inverted_index.new | 102 |
| abstract_inverted_index.not | 88 |
| abstract_inverted_index.one | 26 |
| abstract_inverted_index.our | 205 |
| abstract_inverted_index.the | 28, 34, 41, 62, 108, 118, 122, 132, 142, 160, 169, 177, 180, 186, 202, 216, 228 |
| abstract_inverted_index.Code | 231 |
| abstract_inverted_index.MGDA | 57, 106, 146 |
| abstract_inverted_index.MOL. | 199 |
| abstract_inverted_index.MoDo | 125 |
| abstract_inverted_index.data | 17 |
| abstract_inverted_index.find | 67, 140 |
| abstract_inverted_index.from | 23, 158 |
| abstract_inverted_index.gap, | 97 |
| abstract_inverted_index.have | 47 |
| abstract_inverted_index.idea | 64 |
| abstract_inverted_index.lens | 133 |
| abstract_inverted_index.show | 82 |
| abstract_inverted_index.such | 55 |
| abstract_inverted_index.that | 71, 83, 141, 195 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.when | 11 |
| abstract_inverted_index.with | 111, 129 |
| abstract_inverted_index.(MOL) | 2 |
| abstract_inverted_index.along | 149 |
| abstract_inverted_index.among | 37, 74, 189 |
| abstract_inverted_index.arise | 5 |
| abstract_inverted_index.focus | 99 |
| abstract_inverted_index.often | 4 |
| abstract_inverted_index.ones. | 92 |
| abstract_inverted_index.other | 210 |
| abstract_inverted_index.risk, | 165 |
| abstract_inverted_index.study | 117 |
| abstract_inverted_index.there | 12 |
| abstract_inverted_index.under | 215 |
| abstract_inverted_index.where | 61, 166 |
| abstract_inverted_index.works | 46 |
| abstract_inverted_index.${\cal | 162 |
| abstract_inverted_index.(MoDo) | 114 |
| abstract_inverted_index.Albeit | 76 |
| abstract_inverted_index.Double | 112 |
| abstract_inverted_index.Recent | 45 |
| abstract_inverted_index.always | 89 |
| abstract_inverted_index.avoids | 72 |
| abstract_inverted_index.behind | 145 |
| abstract_inverted_index.during | 40 |
| abstract_inverted_index.hinder | 154 |
| abstract_inverted_index.impact | 178 |
| abstract_inverted_index.number | 170 |
| abstract_inverted_index.static | 91 |
| abstract_inverted_index.tasks. | 21 |
| abstract_inverted_index.unique | 197 |
| abstract_inverted_index.update | 69 |
| abstract_inverted_index.Perhaps | 137 |
| abstract_inverted_index.central | 63 |
| abstract_inverted_index.dynamic | 50, 84, 123, 155, 183 |
| abstract_inverted_index.further | 175 |
| abstract_inverted_index.machine | 8 |
| abstract_inverted_index.methods | 86 |
| abstract_inverted_index.optimal | 161 |
| abstract_inverted_index.studies | 81 |
| abstract_inverted_index.through | 131 |
| abstract_inverted_index.variant | 104 |
| abstract_inverted_index.various | 49, 220 |
| abstract_inverted_index.weights | 184 |
| abstract_inverted_index.conflict | 36, 193 |
| abstract_inverted_index.critical | 29 |
| abstract_inverted_index.emerging | 7 |
| abstract_inverted_index.existing | 211 |
| abstract_inverted_index.gradient | 110 |
| abstract_inverted_index.learning | 1, 9, 15, 20, 222 |
| abstract_inverted_index.multiple | 14 |
| abstract_inverted_index.problems | 3, 10 |
| abstract_inverted_index.process. | 44 |
| abstract_inverted_index.samples. | 173 |
| abstract_inverted_index.sampling | 113 |
| abstract_inverted_index.showcase | 201 |
| abstract_inverted_index.training | 172 |
| abstract_inverted_index.updating | 148 |
| abstract_inverted_index.Different | 22 |
| abstract_inverted_index.achieving | 159 |
| abstract_inverted_index.algorithm | 135 |
| abstract_inverted_index.analyzing | 209 |
| abstract_inverted_index.appealing | 78 |
| abstract_inverted_index.available | 233 |
| abstract_inverted_index.avoidance | 194 |
| abstract_inverted_index.conflicts | 73 |
| abstract_inverted_index.criteria, | 16 |
| abstract_inverted_index.developed | 48 |
| abstract_inverted_index.different | 38 |
| abstract_inverted_index.direction | 70, 151 |
| abstract_inverted_index.empirical | 80 |
| abstract_inverted_index.framework | 207 |
| abstract_inverted_index.interplay | 128 |
| abstract_inverted_index.iterative | 42 |
| abstract_inverted_index.learning, | 25 |
| abstract_inverted_index.performed | 225 |
| abstract_inverted_index.potential | 35 |
| abstract_inverted_index.practical | 229 |
| abstract_inverted_index.rationale | 144 |
| abstract_inverted_index.three-way | 187 |
| abstract_inverted_index.trade-off | 188 |
| abstract_inverted_index.variants, | 60 |
| abstract_inverted_index.weighting | 51, 85, 156 |
| abstract_inverted_index.algorithm, | 115 |
| abstract_inverted_index.algorithms | 52, 157, 214 |
| abstract_inverted_index.benchmarks | 223 |
| abstract_inverted_index.challenges | 30 |
| abstract_inverted_index.framework. | 217 |
| abstract_inverted_index.generality | 203 |
| abstract_inverted_index.intuition, | 79 |
| abstract_inverted_index.multi-task | 221 |
| abstract_inverted_index.objectives | 39 |
| abstract_inverted_index.outperform | 90 |
| abstract_inverted_index.population | 164 |
| abstract_inverted_index.stability. | 136 |
| abstract_inverted_index.stochastic | 103, 212 |
| abstract_inverted_index.understand | 94 |
| abstract_inverted_index.Experiments | 218 |
| abstract_inverted_index.demonstrate | 176, 227 |
| abstract_inverted_index.modalities, | 18 |
| abstract_inverted_index.objectives. | 75 |
| abstract_inverted_index.performance | 120 |
| abstract_inverted_index.theoretical | 206 |
| abstract_inverted_index.variability | 181 |
| abstract_inverted_index.optimization | 43, 130 |
| abstract_inverted_index.optimization, | 190 |
| abstract_inverted_index.surprisingly, | 138 |
| abstract_inverted_index.applicability. | 230 |
| abstract_inverted_index.generalization | 119 |
| abstract_inverted_index.Multi-objective | 0, 109 |
| abstract_inverted_index.O}(1/\sqrt{n})$ | 163 |
| abstract_inverted_index.generalization, | 191 |
| abstract_inverted_index.weighting-based | 124 |
| abstract_inverted_index.single-objective | 24 |
| abstract_inverted_index.theory-practical | 96 |
| abstract_inverted_index.conflict-avoidant | 150 |
| abstract_inverted_index.https://github.com/heshandevaka/Trade-Off-MOL. | 235 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.6649912 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |