Three‐dimensional obstacle avoidance for UAV based on reinforcement learning and RealSense Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1049/joe.2019.1167
With the increasingly widespread application of unmanned aerial vehicle (UAV), safety issues such as effectiveness of obstacle avoidance have been paid more attentions. The classical obstacle avoidance algorithms are mostly suitable for mobile robots, but these algorithms are not ideal for UAV using in three‐dimensional space. Most of the three‐dimensional obstacle avoidance algorithms which are more effective using RGB image data as input. Thus, a large amount of image data is involved in complex computing process. This study proposes an effective obstacle avoidance algorithm for UAV with less input data and fewer sensors based on RealSense and reinforcement learning. It combines the feature map of the depth image of RealSense as the input data of reinforcement learning and the current direction of flight of UAV to calculate the direction and angle of avoiding. The proposed algorithm that implements real‐time obstacle avoidance for UAV has been verified by simulation and tested in three‐dimensional space scenario.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/joe.2019.1167
- OA Status
- gold
- Cited By
- 5
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3032185456
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3032185456Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/joe.2019.1167Digital Object Identifier
- Title
-
Three‐dimensional obstacle avoidance for UAV based on reinforcement learning and RealSenseWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-22Full publication date if available
- Authors
-
Deqiang Han, Qishan Yang, Rui WangList of authors in order
- Landing page
-
https://doi.org/10.1049/joe.2019.1167Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1049/joe.2019.1167Direct OA link when available
- Concepts
-
Obstacle avoidance, Computer science, Obstacle, Artificial intelligence, Reinforcement learning, Computer vision, Robot, Geography, Mobile robot, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3032185456 |
|---|---|
| doi | https://doi.org/10.1049/joe.2019.1167 |
| ids.doi | https://doi.org/10.1049/joe.2019.1167 |
| ids.mag | 3032185456 |
| ids.openalex | https://openalex.org/W3032185456 |
| fwci | 0.89598186 |
| type | article |
| title | Three‐dimensional obstacle avoidance for UAV based on reinforcement learning and RealSense |
| biblio.issue | 13 |
| biblio.volume | 2020 |
| biblio.last_page | 544 |
| biblio.first_page | 540 |
| topics[0].id | https://openalex.org/T10191 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Robotics and Sensor-Based Localization |
| topics[1].id | https://openalex.org/T13382 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Robotics and Automated Systems |
| topics[2].id | https://openalex.org/T10586 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.994700014591217 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Robotic Path Planning Algorithms |
| is_xpac | False |
| apc_list.value | 1500 |
| apc_list.currency | EUR |
| apc_list.value_usd | 1650 |
| apc_paid.value | 1500 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1650 |
| concepts[0].id | https://openalex.org/C6683253 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8693584203720093 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7075535 |
| concepts[0].display_name | Obstacle avoidance |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6954796314239502 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776650193 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6351609826087952 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q264661 |
| concepts[2].display_name | Obstacle |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5759113430976868 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C97541855 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5583873987197876 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[4].display_name | Reinforcement learning |
| concepts[5].id | https://openalex.org/C31972630 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5339685082435608 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[5].display_name | Computer vision |
| concepts[6].id | https://openalex.org/C90509273 |
| concepts[6].level | 2 |
| concepts[6].score | 0.05890640616416931 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[6].display_name | Robot |
| concepts[7].id | https://openalex.org/C205649164 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0482943058013916 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[7].display_name | Geography |
| concepts[8].id | https://openalex.org/C19966478 |
| concepts[8].level | 3 |
| concepts[8].score | 0.04103866219520569 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4810574 |
| concepts[8].display_name | Mobile robot |
| concepts[9].id | https://openalex.org/C166957645 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[9].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/obstacle-avoidance |
| keywords[0].score | 0.8693584203720093 |
| keywords[0].display_name | Obstacle avoidance |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6954796314239502 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/obstacle |
| keywords[2].score | 0.6351609826087952 |
| keywords[2].display_name | Obstacle |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5759113430976868 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[4].score | 0.5583873987197876 |
| keywords[4].display_name | Reinforcement learning |
| keywords[5].id | https://openalex.org/keywords/computer-vision |
| keywords[5].score | 0.5339685082435608 |
| keywords[5].display_name | Computer vision |
| keywords[6].id | https://openalex.org/keywords/robot |
| keywords[6].score | 0.05890640616416931 |
| keywords[6].display_name | Robot |
| keywords[7].id | https://openalex.org/keywords/geography |
| keywords[7].score | 0.0482943058013916 |
| keywords[7].display_name | Geography |
| keywords[8].id | https://openalex.org/keywords/mobile-robot |
| keywords[8].score | 0.04103866219520569 |
| keywords[8].display_name | Mobile robot |
| language | en |
| locations[0].id | doi:10.1049/joe.2019.1167 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764687066 |
| locations[0].source.issn | 2051-3305 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2051-3305 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Journal of Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Journal of Engineering |
| locations[0].landing_page_url | https://doi.org/10.1049/joe.2019.1167 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5024649502 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5603-796X |
| authorships[0].author.display_name | Deqiang Han |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Beijing University of Technology, Beijing, 100124 People's Republic of China |
| authorships[0].institutions[0].id | https://openalex.org/I37796252 |
| authorships[0].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deqiang Han |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Faculty of Information Technology, Beijing University of Technology, Beijing, 100124 People's Republic of China |
| authorships[1].author.id | https://openalex.org/A5109484657 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qishan Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Beijing University of Technology, Beijing, 100124 People's Republic of China |
| authorships[1].institutions[0].id | https://openalex.org/I37796252 |
| authorships[1].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qishan Yang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Faculty of Information Technology, Beijing University of Technology, Beijing, 100124 People's Republic of China |
| authorships[2].author.id | https://openalex.org/A5115695180 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5492-8977 |
| authorships[2].author.display_name | Rui Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Information Technology, Beijing University of Technology, Beijing, 100124 People's Republic of China |
| authorships[2].institutions[0].id | https://openalex.org/I37796252 |
| authorships[2].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beijing University of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Rui Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Information Technology, Beijing University of Technology, Beijing, 100124 People's Republic of China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1049/joe.2019.1167 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Three‐dimensional obstacle avoidance for UAV based on reinforcement learning and RealSense |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10191 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Robotics and Sensor-Based Localization |
| related_works | https://openalex.org/W2126807813, https://openalex.org/W2051516969, https://openalex.org/W4315782950, https://openalex.org/W3197076343, https://openalex.org/W2508207563, https://openalex.org/W1941772210, https://openalex.org/W2965672371, https://openalex.org/W2378471178, https://openalex.org/W2596417931, https://openalex.org/W2778493813 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1049/joe.2019.1167 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764687066 |
| best_oa_location.source.issn | 2051-3305 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2051-3305 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Journal of Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Journal of Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1049/joe.2019.1167 |
| primary_location.id | doi:10.1049/joe.2019.1167 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764687066 |
| primary_location.source.issn | 2051-3305 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2051-3305 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Journal of Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Journal of Engineering |
| primary_location.landing_page_url | https://doi.org/10.1049/joe.2019.1167 |
| publication_date | 2020-05-22 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2902936065, https://openalex.org/W2565902248, https://openalex.org/W3047560529, https://openalex.org/W1568088346, https://openalex.org/W2765833400, https://openalex.org/W2962957005 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 64 |
| abstract_inverted_index.It | 99 |
| abstract_inverted_index.an | 79 |
| abstract_inverted_index.as | 13, 61, 110 |
| abstract_inverted_index.by | 146 |
| abstract_inverted_index.in | 43, 72, 150 |
| abstract_inverted_index.is | 70 |
| abstract_inverted_index.of | 5, 15, 47, 67, 104, 108, 114, 121, 123, 131 |
| abstract_inverted_index.on | 94 |
| abstract_inverted_index.to | 125 |
| abstract_inverted_index.RGB | 58 |
| abstract_inverted_index.The | 23, 133 |
| abstract_inverted_index.UAV | 41, 85, 124, 142 |
| abstract_inverted_index.and | 90, 96, 117, 129, 148 |
| abstract_inverted_index.are | 28, 37, 54 |
| abstract_inverted_index.but | 34 |
| abstract_inverted_index.for | 31, 40, 84, 141 |
| abstract_inverted_index.has | 143 |
| abstract_inverted_index.map | 103 |
| abstract_inverted_index.not | 38 |
| abstract_inverted_index.the | 1, 48, 101, 105, 111, 118, 127 |
| abstract_inverted_index.Most | 46 |
| abstract_inverted_index.This | 76 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.been | 19, 144 |
| abstract_inverted_index.data | 60, 69, 89, 113 |
| abstract_inverted_index.have | 18 |
| abstract_inverted_index.less | 87 |
| abstract_inverted_index.more | 21, 55 |
| abstract_inverted_index.paid | 20 |
| abstract_inverted_index.such | 12 |
| abstract_inverted_index.that | 136 |
| abstract_inverted_index.with | 86 |
| abstract_inverted_index.Thus, | 63 |
| abstract_inverted_index.angle | 130 |
| abstract_inverted_index.based | 93 |
| abstract_inverted_index.depth | 106 |
| abstract_inverted_index.fewer | 91 |
| abstract_inverted_index.ideal | 39 |
| abstract_inverted_index.image | 59, 68, 107 |
| abstract_inverted_index.input | 88, 112 |
| abstract_inverted_index.large | 65 |
| abstract_inverted_index.space | 152 |
| abstract_inverted_index.study | 77 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.using | 42, 57 |
| abstract_inverted_index.which | 53 |
| abstract_inverted_index.(UAV), | 9 |
| abstract_inverted_index.aerial | 7 |
| abstract_inverted_index.amount | 66 |
| abstract_inverted_index.flight | 122 |
| abstract_inverted_index.input. | 62 |
| abstract_inverted_index.issues | 11 |
| abstract_inverted_index.mobile | 32 |
| abstract_inverted_index.mostly | 29 |
| abstract_inverted_index.safety | 10 |
| abstract_inverted_index.space. | 45 |
| abstract_inverted_index.tested | 149 |
| abstract_inverted_index.complex | 73 |
| abstract_inverted_index.current | 119 |
| abstract_inverted_index.feature | 102 |
| abstract_inverted_index.robots, | 33 |
| abstract_inverted_index.sensors | 92 |
| abstract_inverted_index.vehicle | 8 |
| abstract_inverted_index.combines | 100 |
| abstract_inverted_index.involved | 71 |
| abstract_inverted_index.learning | 116 |
| abstract_inverted_index.obstacle | 16, 25, 50, 81, 139 |
| abstract_inverted_index.process. | 75 |
| abstract_inverted_index.proposed | 134 |
| abstract_inverted_index.proposes | 78 |
| abstract_inverted_index.suitable | 30 |
| abstract_inverted_index.unmanned | 6 |
| abstract_inverted_index.verified | 145 |
| abstract_inverted_index.RealSense | 95, 109 |
| abstract_inverted_index.algorithm | 83, 135 |
| abstract_inverted_index.avoidance | 17, 26, 51, 82, 140 |
| abstract_inverted_index.avoiding. | 132 |
| abstract_inverted_index.calculate | 126 |
| abstract_inverted_index.classical | 24 |
| abstract_inverted_index.computing | 74 |
| abstract_inverted_index.direction | 120, 128 |
| abstract_inverted_index.effective | 56, 80 |
| abstract_inverted_index.learning. | 98 |
| abstract_inverted_index.scenario. | 153 |
| abstract_inverted_index.algorithms | 27, 36, 52 |
| abstract_inverted_index.implements | 137 |
| abstract_inverted_index.simulation | 147 |
| abstract_inverted_index.widespread | 3 |
| abstract_inverted_index.application | 4 |
| abstract_inverted_index.attentions. | 22 |
| abstract_inverted_index.real‐time | 138 |
| abstract_inverted_index.increasingly | 2 |
| abstract_inverted_index.effectiveness | 14 |
| abstract_inverted_index.reinforcement | 97, 115 |
| abstract_inverted_index.three‐dimensional | 44, 49, 151 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5109484657 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I37796252 |
| citation_normalized_percentile.value | 0.81710852 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |