THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.17615/aght-a369
Hi-C data provide population averaged estimates of three-dimensional chromatin contacts across cell types and states in bulk samples. Effective analysis of Hi-C data entails controlling for the potential confounding factor of differential cell type proportions across heterogeneous bulk samples. We propose a novel unsupervised deconvolution method for inferring cell type composition from bulk Hi-C data, the Two-step Hi-c UNsupervised DEconvolution appRoach (THUNDER). We conducted extensive simulations to test THUNDER based on combining two published single-cell Hi-C (scHi-C) datasets. THUNDER more accurately estimates the underlying cell type proportions compared to reference-free methods (e.g., TOAST, and NMF) and is more robust than reference-dependent methods (e.g. MuSiC). We further demonstrate the practical utility of THUNDER to estimate cell type proportions and identify cell-type-specific interactions in Hi-C data from adult human cortex tissue samples. THUNDER will be a useful tool in adjusting for varying cell type composition in population samples, facilitating valid and more powerful downstream analysis such as differential chromatin organization studies. Additionally, THUNDER estimated contact profiles provide a useful exploratory framework to investigate cell-type-specificity of the chromatin interactome while experimental data is still rare.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17615/aght-a369
- https://doi.org/10.17615/aght-a369
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225513467
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225513467Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17615/aght-a369Digital Object Identifier
- Title
-
THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C dataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Bryce Rowland, Ruth Huh, Zoey Hou, Cheynna Crowley, Jia Wen, Shen Yin, Ming Hu, Paola Giusti‐Rodríguez, Patrick F. Sullivan, Yun LiList of authors in order
- Landing page
-
https://doi.org/10.17615/aght-a369Publisher landing page
- PDF URL
-
https://doi.org/10.17615/aght-a369Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.17615/aght-a369Direct OA link when available
- Concepts
-
Thunder, Deconvolution, Type (biology), Computer science, Remote sensing, Geography, Algorithm, Biology, Meteorology, EcologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225513467 |
|---|---|
| doi | https://doi.org/10.17615/aght-a369 |
| ids.openalex | https://openalex.org/W4225513467 |
| fwci | 0.0 |
| type | article |
| title | THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.5169000029563904 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.45249998569488525 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C206554765 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9661421179771423 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q83301 |
| concepts[0].display_name | Thunder |
| concepts[1].id | https://openalex.org/C174576160 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8527674674987793 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1183700 |
| concepts[1].display_name | Deconvolution |
| concepts[2].id | https://openalex.org/C2777299769 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5357773303985596 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3707858 |
| concepts[2].display_name | Type (biology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3530658781528473 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3384389877319336 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2682074308395386 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C11413529 |
| concepts[6].level | 1 |
| concepts[6].score | 0.23468777537345886 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[6].display_name | Algorithm |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.15198737382888794 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C153294291 |
| concepts[8].level | 1 |
| concepts[8].score | 0.12887880206108093 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[8].display_name | Meteorology |
| concepts[9].id | https://openalex.org/C18903297 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[9].display_name | Ecology |
| keywords[0].id | https://openalex.org/keywords/thunder |
| keywords[0].score | 0.9661421179771423 |
| keywords[0].display_name | Thunder |
| keywords[1].id | https://openalex.org/keywords/deconvolution |
| keywords[1].score | 0.8527674674987793 |
| keywords[1].display_name | Deconvolution |
| keywords[2].id | https://openalex.org/keywords/type |
| keywords[2].score | 0.5357773303985596 |
| keywords[2].display_name | Type (biology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3530658781528473 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.3384389877319336 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.2682074308395386 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/algorithm |
| keywords[6].score | 0.23468777537345886 |
| keywords[6].display_name | Algorithm |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.15198737382888794 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/meteorology |
| keywords[8].score | 0.12887880206108093 |
| keywords[8].display_name | Meteorology |
| language | en |
| locations[0].id | pmh:cdr.lib.unc.edu:k0698k01m |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.17615/aght-a369 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Article |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | PLOS Genetics, 18(3) |
| locations[0].landing_page_url | https://doi.org/10.17615/aght-a369 |
| authorships[0].author.id | https://openalex.org/A5039356214 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8900-6905 |
| authorships[0].author.display_name | Bryce Rowland |
| authorships[0].affiliations[0].raw_affiliation_string | Gillings School of Global Public Health, Department of Biostatistics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rowland, Bryce |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Gillings School of Global Public Health, Department of Biostatistics |
| authorships[1].author.id | https://openalex.org/A5008904789 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7725-088X |
| authorships[1].author.display_name | Ruth Huh |
| authorships[1].affiliations[0].raw_affiliation_string | Gillings School of Global Public Health, Department of Biostatistics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huh, Ruth |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Gillings School of Global Public Health, Department of Biostatistics |
| authorships[2].author.id | https://openalex.org/A5028566643 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zoey Hou |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hou, Zoey |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5016264820 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4926-2875 |
| authorships[3].author.display_name | Cheynna Crowley |
| authorships[3].affiliations[0].raw_affiliation_string | Gillings School of Global Public Health, Department of Biostatistics |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Crowley, Cheynna |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Gillings School of Global Public Health, Department of Biostatistics |
| authorships[4].author.id | https://openalex.org/A5049373827 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Jia Wen |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210147155 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Medicine, Department of Genetics |
| authorships[4].institutions[0].id | https://openalex.org/I4210147155 |
| authorships[4].institutions[0].ror | https://ror.org/03t432d20 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210147155 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Pediatrics and Genetics |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wen, Jia |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Medicine, Department of Genetics |
| authorships[5].author.id | https://openalex.org/A5069744156 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3802-9269 |
| authorships[5].author.display_name | Shen Yin |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shen, Yin |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5087733640 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8209-0139 |
| authorships[6].author.display_name | Ming Hu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hu, Ming |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5043647815 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1921-1305 |
| authorships[7].author.display_name | Paola Giusti‐Rodríguez |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Giusti-Rodríguez, Paola |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5061802355 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6619-873X |
| authorships[8].author.display_name | Patrick F. Sullivan |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210147155 |
| authorships[8].affiliations[0].raw_affiliation_string | School of Medicine, Department of Genetics |
| authorships[8].institutions[0].id | https://openalex.org/I4210147155 |
| authorships[8].institutions[0].ror | https://ror.org/03t432d20 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210147155 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Pediatrics and Genetics |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Sullivan, Patrick F. |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | School of Medicine, Department of Genetics |
| authorships[9].author.id | https://openalex.org/A5100369196 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-8225-4554 |
| authorships[9].author.display_name | Yun Li |
| authorships[9].affiliations[0].raw_affiliation_string | Gillings School of Global Public Health, Department of Biostatistics |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Li, Yun |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Gillings School of Global Public Health, Department of Biostatistics |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.17615/aght-a369 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-05T00:00:00 |
| display_name | THUNDER: A reference-free deconvolution method to infer cell type proportions from bulk Hi-C data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.5169000029563904 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2352685929, https://openalex.org/W2355348723, https://openalex.org/W2391349556, https://openalex.org/W2390350570, https://openalex.org/W2378338307, https://openalex.org/W2363516536, https://openalex.org/W2355404548, https://openalex.org/W2370504859 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:cdr.lib.unc.edu:k0698k01m |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.17615/aght-a369 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | PLOS Genetics, 18(3) |
| best_oa_location.landing_page_url | https://doi.org/10.17615/aght-a369 |
| primary_location.id | pmh:cdr.lib.unc.edu:k0698k01m |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.17615/aght-a369 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Article |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | PLOS Genetics, 18(3) |
| primary_location.landing_page_url | https://doi.org/10.17615/aght-a369 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 41, 133, 165 |
| abstract_inverted_index.We | 39, 62, 104 |
| abstract_inverted_index.as | 154 |
| abstract_inverted_index.be | 132 |
| abstract_inverted_index.in | 15, 121, 136, 143 |
| abstract_inverted_index.is | 96, 179 |
| abstract_inverted_index.of | 6, 20, 30, 110, 172 |
| abstract_inverted_index.on | 70 |
| abstract_inverted_index.to | 66, 88, 112, 169 |
| abstract_inverted_index.and | 13, 93, 95, 117, 148 |
| abstract_inverted_index.for | 25, 46, 138 |
| abstract_inverted_index.the | 26, 55, 82, 107, 173 |
| abstract_inverted_index.two | 72 |
| abstract_inverted_index.Hi-C | 0, 21, 53, 75, 122 |
| abstract_inverted_index.Hi-c | 57 |
| abstract_inverted_index.NMF) | 94 |
| abstract_inverted_index.bulk | 16, 37, 52 |
| abstract_inverted_index.cell | 11, 32, 48, 84, 114, 140 |
| abstract_inverted_index.data | 1, 22, 123, 178 |
| abstract_inverted_index.from | 51, 124 |
| abstract_inverted_index.more | 79, 97, 149 |
| abstract_inverted_index.such | 153 |
| abstract_inverted_index.test | 67 |
| abstract_inverted_index.than | 99 |
| abstract_inverted_index.tool | 135 |
| abstract_inverted_index.type | 33, 49, 85, 115, 141 |
| abstract_inverted_index.will | 131 |
| abstract_inverted_index.(e.g. | 102 |
| abstract_inverted_index.adult | 125 |
| abstract_inverted_index.based | 69 |
| abstract_inverted_index.data, | 54 |
| abstract_inverted_index.human | 126 |
| abstract_inverted_index.novel | 42 |
| abstract_inverted_index.rare. | 181 |
| abstract_inverted_index.still | 180 |
| abstract_inverted_index.types | 12 |
| abstract_inverted_index.valid | 147 |
| abstract_inverted_index.while | 176 |
| abstract_inverted_index.(e.g., | 91 |
| abstract_inverted_index.TOAST, | 92 |
| abstract_inverted_index.across | 10, 35 |
| abstract_inverted_index.cortex | 127 |
| abstract_inverted_index.factor | 29 |
| abstract_inverted_index.method | 45 |
| abstract_inverted_index.robust | 98 |
| abstract_inverted_index.states | 14 |
| abstract_inverted_index.tissue | 128 |
| abstract_inverted_index.useful | 134, 166 |
| abstract_inverted_index.MuSiC). | 103 |
| abstract_inverted_index.THUNDER | 68, 78, 111, 130, 160 |
| abstract_inverted_index.contact | 162 |
| abstract_inverted_index.entails | 23 |
| abstract_inverted_index.further | 105 |
| abstract_inverted_index.methods | 90, 101 |
| abstract_inverted_index.propose | 40 |
| abstract_inverted_index.provide | 2, 164 |
| abstract_inverted_index.utility | 109 |
| abstract_inverted_index.varying | 139 |
| abstract_inverted_index.(scHi-C) | 76 |
| abstract_inverted_index.Two-step | 56 |
| abstract_inverted_index.analysis | 19, 152 |
| abstract_inverted_index.appRoach | 60 |
| abstract_inverted_index.averaged | 4 |
| abstract_inverted_index.compared | 87 |
| abstract_inverted_index.contacts | 9 |
| abstract_inverted_index.estimate | 113 |
| abstract_inverted_index.identify | 118 |
| abstract_inverted_index.powerful | 150 |
| abstract_inverted_index.profiles | 163 |
| abstract_inverted_index.samples, | 145 |
| abstract_inverted_index.samples. | 17, 38, 129 |
| abstract_inverted_index.studies. | 158 |
| abstract_inverted_index.Effective | 18 |
| abstract_inverted_index.adjusting | 137 |
| abstract_inverted_index.chromatin | 8, 156, 174 |
| abstract_inverted_index.combining | 71 |
| abstract_inverted_index.conducted | 63 |
| abstract_inverted_index.datasets. | 77 |
| abstract_inverted_index.estimated | 161 |
| abstract_inverted_index.estimates | 5, 81 |
| abstract_inverted_index.extensive | 64 |
| abstract_inverted_index.framework | 168 |
| abstract_inverted_index.inferring | 47 |
| abstract_inverted_index.potential | 27 |
| abstract_inverted_index.practical | 108 |
| abstract_inverted_index.published | 73 |
| abstract_inverted_index.(THUNDER). | 61 |
| abstract_inverted_index.accurately | 80 |
| abstract_inverted_index.downstream | 151 |
| abstract_inverted_index.population | 3, 144 |
| abstract_inverted_index.underlying | 83 |
| abstract_inverted_index.composition | 50, 142 |
| abstract_inverted_index.confounding | 28 |
| abstract_inverted_index.controlling | 24 |
| abstract_inverted_index.demonstrate | 106 |
| abstract_inverted_index.exploratory | 167 |
| abstract_inverted_index.interactome | 175 |
| abstract_inverted_index.investigate | 170 |
| abstract_inverted_index.proportions | 34, 86, 116 |
| abstract_inverted_index.simulations | 65 |
| abstract_inverted_index.single-cell | 74 |
| abstract_inverted_index.UNsupervised | 58 |
| abstract_inverted_index.differential | 31, 155 |
| abstract_inverted_index.experimental | 177 |
| abstract_inverted_index.facilitating | 146 |
| abstract_inverted_index.interactions | 120 |
| abstract_inverted_index.organization | 157 |
| abstract_inverted_index.unsupervised | 43 |
| abstract_inverted_index.Additionally, | 159 |
| abstract_inverted_index.DEconvolution | 59 |
| abstract_inverted_index.deconvolution | 44 |
| abstract_inverted_index.heterogeneous | 36 |
| abstract_inverted_index.reference-free | 89 |
| abstract_inverted_index.three-dimensional | 7 |
| abstract_inverted_index.cell-type-specific | 119 |
| abstract_inverted_index.reference-dependent | 100 |
| abstract_inverted_index.cell-type-specificity | 171 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.04841645 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |