TigAug: Data Augmentation for Testing Traffic Light Detection in Autonomous Driving Systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.05932
Autonomous vehicle technology has been developed in the last decades with recent advances in sensing and computing technology. There is an urgent need to ensure the reliability and robustness of autonomous driving systems (ADSs). Despite the recent achievements in testing various ADS modules, little attention has been paid on the automated testing of traffic light detection models in ADSs. A common practice is to manually collect and label traffic light data. However, it is labor-intensive, and even impossible to collect diverse data under different driving environments. To address these problems, we propose and implement TigAug to automatically augment labeled traffic light images for testing traffic light detection models in ADSs. We construct two families of metamorphic relations and three families of transformations based on a systematic understanding of weather environments, camera properties, and traffic light properties. We use augmented images to detect erroneous behaviors of traffic light detection models by transformation-specific metamorphic relations, and to improve the performance of traffic light detection models by retraining. Large-scale experiments with four state-of-the-art traffic light detection models and two traffic light datasets have demonstrated that i) TigAug is effective in testing traffic light detection models, ii) TigAug is efficient in synthesizing traffic light images, and iii) TigAug generates traffic light images with acceptable naturalness.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.05932
- https://arxiv.org/pdf/2507.05932
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416061673
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416061673Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.05932Digital Object Identifier
- Title
-
TigAug: Data Augmentation for Testing Traffic Light Detection in Autonomous Driving SystemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-08Full publication date if available
- Authors
-
Y. P. Lu, Dong Wang, Kaifeng Huang, Bihuan Chen, Xin PengList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.05932Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.05932Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.05932Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416061673 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.05932 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.05932 |
| ids.openalex | https://openalex.org/W4416061673 |
| fwci | |
| type | preprint |
| title | TigAug: Data Augmentation for Testing Traffic Light Detection in Autonomous Driving Systems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.05932 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.05932 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.05932 |
| locations[1].id | doi:10.48550/arxiv.2507.05932 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.05932 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021146040 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-8946-9596 |
| authorships[0].author.display_name | Y. P. Lu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lu, You |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100665334 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7446-4604 |
| authorships[1].author.display_name | Dong Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Dingji |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5120322493 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kaifeng Huang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Huang, Kaifeng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5059253116 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7238-7492 |
| authorships[3].author.display_name | Bihuan Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Chen, Bihuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101854992 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3376-2581 |
| authorships[4].author.display_name | Xin Peng |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Peng, Xin |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.05932 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TigAug: Data Augmentation for Testing Traffic Light Detection in Autonomous Driving Systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:25:21.940643 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.05932 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.05932 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.05932 |
| primary_location.id | pmh:oai:arXiv.org:2507.05932 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.05932 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.05932 |
| publication_date | 2025-07-08 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 59 |
| abstract_inverted_index.a | 124 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.We | 110, 136 |
| abstract_inverted_index.an | 20 |
| abstract_inverted_index.by | 149, 163 |
| abstract_inverted_index.i) | 182 |
| abstract_inverted_index.in | 6, 13, 38, 57, 108, 186, 196 |
| abstract_inverted_index.is | 19, 62, 73, 184, 194 |
| abstract_inverted_index.it | 72 |
| abstract_inverted_index.of | 29, 52, 114, 120, 127, 144, 158 |
| abstract_inverted_index.on | 48, 123 |
| abstract_inverted_index.to | 23, 63, 78, 95, 140, 154 |
| abstract_inverted_index.we | 90 |
| abstract_inverted_index.ADS | 41 |
| abstract_inverted_index.and | 15, 27, 66, 75, 92, 117, 132, 153, 174, 201 |
| abstract_inverted_index.for | 102 |
| abstract_inverted_index.has | 3, 45 |
| abstract_inverted_index.ii) | 192 |
| abstract_inverted_index.the | 7, 25, 35, 49, 156 |
| abstract_inverted_index.two | 112, 175 |
| abstract_inverted_index.use | 137 |
| abstract_inverted_index.been | 4, 46 |
| abstract_inverted_index.data | 81 |
| abstract_inverted_index.even | 76 |
| abstract_inverted_index.four | 168 |
| abstract_inverted_index.have | 179 |
| abstract_inverted_index.iii) | 202 |
| abstract_inverted_index.last | 8 |
| abstract_inverted_index.need | 22 |
| abstract_inverted_index.paid | 47 |
| abstract_inverted_index.that | 181 |
| abstract_inverted_index.with | 10, 167, 208 |
| abstract_inverted_index.ADSs. | 58, 109 |
| abstract_inverted_index.There | 18 |
| abstract_inverted_index.based | 122 |
| abstract_inverted_index.data. | 70 |
| abstract_inverted_index.label | 67 |
| abstract_inverted_index.light | 54, 69, 100, 105, 134, 146, 160, 171, 177, 189, 199, 206 |
| abstract_inverted_index.these | 88 |
| abstract_inverted_index.three | 118 |
| abstract_inverted_index.under | 82 |
| abstract_inverted_index.TigAug | 94, 183, 193, 203 |
| abstract_inverted_index.camera | 130 |
| abstract_inverted_index.common | 60 |
| abstract_inverted_index.detect | 141 |
| abstract_inverted_index.ensure | 24 |
| abstract_inverted_index.images | 101, 139, 207 |
| abstract_inverted_index.little | 43 |
| abstract_inverted_index.models | 56, 107, 148, 162, 173 |
| abstract_inverted_index.recent | 11, 36 |
| abstract_inverted_index.urgent | 21 |
| abstract_inverted_index.(ADSs). | 33 |
| abstract_inverted_index.Despite | 34 |
| abstract_inverted_index.address | 87 |
| abstract_inverted_index.augment | 97 |
| abstract_inverted_index.collect | 65, 79 |
| abstract_inverted_index.decades | 9 |
| abstract_inverted_index.diverse | 80 |
| abstract_inverted_index.driving | 31, 84 |
| abstract_inverted_index.images, | 200 |
| abstract_inverted_index.improve | 155 |
| abstract_inverted_index.labeled | 98 |
| abstract_inverted_index.models, | 191 |
| abstract_inverted_index.propose | 91 |
| abstract_inverted_index.sensing | 14 |
| abstract_inverted_index.systems | 32 |
| abstract_inverted_index.testing | 39, 51, 103, 187 |
| abstract_inverted_index.traffic | 53, 68, 99, 104, 133, 145, 159, 170, 176, 188, 198, 205 |
| abstract_inverted_index.various | 40 |
| abstract_inverted_index.vehicle | 1 |
| abstract_inverted_index.weather | 128 |
| abstract_inverted_index.However, | 71 |
| abstract_inverted_index.advances | 12 |
| abstract_inverted_index.datasets | 178 |
| abstract_inverted_index.families | 113, 119 |
| abstract_inverted_index.manually | 64 |
| abstract_inverted_index.modules, | 42 |
| abstract_inverted_index.practice | 61 |
| abstract_inverted_index.attention | 44 |
| abstract_inverted_index.augmented | 138 |
| abstract_inverted_index.automated | 50 |
| abstract_inverted_index.behaviors | 143 |
| abstract_inverted_index.computing | 16 |
| abstract_inverted_index.construct | 111 |
| abstract_inverted_index.detection | 55, 106, 147, 161, 172, 190 |
| abstract_inverted_index.developed | 5 |
| abstract_inverted_index.different | 83 |
| abstract_inverted_index.effective | 185 |
| abstract_inverted_index.efficient | 195 |
| abstract_inverted_index.erroneous | 142 |
| abstract_inverted_index.generates | 204 |
| abstract_inverted_index.implement | 93 |
| abstract_inverted_index.problems, | 89 |
| abstract_inverted_index.relations | 116 |
| abstract_inverted_index.Autonomous | 0 |
| abstract_inverted_index.acceptable | 209 |
| abstract_inverted_index.autonomous | 30 |
| abstract_inverted_index.impossible | 77 |
| abstract_inverted_index.relations, | 152 |
| abstract_inverted_index.robustness | 28 |
| abstract_inverted_index.systematic | 125 |
| abstract_inverted_index.technology | 2 |
| abstract_inverted_index.Large-scale | 165 |
| abstract_inverted_index.experiments | 166 |
| abstract_inverted_index.metamorphic | 115, 151 |
| abstract_inverted_index.performance | 157 |
| abstract_inverted_index.properties, | 131 |
| abstract_inverted_index.properties. | 135 |
| abstract_inverted_index.reliability | 26 |
| abstract_inverted_index.retraining. | 164 |
| abstract_inverted_index.technology. | 17 |
| abstract_inverted_index.achievements | 37 |
| abstract_inverted_index.demonstrated | 180 |
| abstract_inverted_index.naturalness. | 210 |
| abstract_inverted_index.synthesizing | 197 |
| abstract_inverted_index.automatically | 96 |
| abstract_inverted_index.environments, | 129 |
| abstract_inverted_index.environments. | 85 |
| abstract_inverted_index.understanding | 126 |
| abstract_inverted_index.transformations | 121 |
| abstract_inverted_index.labor-intensive, | 74 |
| abstract_inverted_index.state-of-the-art | 169 |
| abstract_inverted_index.transformation-specific | 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |