Tight Approximation Algorithms for Two Dimensional Guillotine Strip Packing Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.05989
In the Strip Packing problem (SP), we are given a vertical half-strip $[0,W]\times[0,\infty)$ and a set of $n$ axis-aligned rectangles of width at most $W$. The goal is to find a non-overlapping packing of all rectangles into the strip such that the height of the packing is minimized. A well-studied and frequently used practical constraint is to allow only those packings that are guillotine separable, i.e., every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge axis-parallel cuts (guillotine cuts) that do not intersect any item of the solution. In this paper, we study approximation algorithms for the Guillotine Strip Packing problem (GSP), i.e., the Strip Packing problem where we require additionally that the packing needs to be guillotine separable. This problem generalizes the classical Bin Packing problem and also makespan minimization on identical machines, and thus it is already strongly NP-hard. Moreover, due to a reduction from the Partition problem, it is NP-hard to obtain a polynomial-time $(3/2-\varepsilon)$-approximation algorithm for GSP for any $\varepsilon>0$ (exactly as Strip Packing). We provide a matching polynomial time $(3/2+\varepsilon)$-approximation algorithm for GSP. Furthermore, we present a pseudo-polynomial time $(1+\varepsilon)$-approximation algorithm for GSP. This is surprising as it is NP-hard to obtain a $(5/4-\varepsilon)$-approximation algorithm for (general) Strip Packing in pseudo-polynomial time. Thus, our results essentially settle the approximability of GSP for both the polynomial and the pseudo-polynomial settings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.05989
- https://arxiv.org/pdf/2202.05989
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221165653
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221165653Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.05989Digital Object Identifier
- Title
-
Tight Approximation Algorithms for Two Dimensional Guillotine Strip PackingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-12Full publication date if available
- Authors
-
Arindam Khan, Aditya Lonkar, Arnab Maiti, Amatya Sharma, Andreas WieseList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.05989Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.05989Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.05989Direct OA link when available
- Concepts
-
Packing problems, Combinatorics, Approximation algorithm, Bin packing problem, Mathematics, Rectangle, Time complexity, Partition (number theory), Matching (statistics), Separable space, Set packing, Algorithm, Sequence (biology), Set (abstract data type), Geometry, Bin, Computer science, Mathematical analysis, Statistics, Biology, Programming language, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221165653 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.05989 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.05989 |
| ids.openalex | https://openalex.org/W4221165653 |
| fwci | |
| type | preprint |
| title | Tight Approximation Algorithms for Two Dimensional Guillotine Strip Packing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12176 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Optimization and Packing Problems |
| topics[1].id | https://openalex.org/T11814 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Advanced Manufacturing and Logistics Optimization |
| topics[2].id | https://openalex.org/T11797 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9122999906539917 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | graph theory and CDMA systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C130253271 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8298453688621521 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3851477 |
| concepts[0].display_name | Packing problems |
| concepts[1].id | https://openalex.org/C114614502 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6926334500312805 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[1].display_name | Combinatorics |
| concepts[2].id | https://openalex.org/C148764684 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6721629500389099 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q621751 |
| concepts[2].display_name | Approximation algorithm |
| concepts[3].id | https://openalex.org/C87219788 |
| concepts[3].level | 3 |
| concepts[3].score | 0.667870044708252 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q814581 |
| concepts[3].display_name | Bin packing problem |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6292518973350525 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C2781302577 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5847084522247314 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q209 |
| concepts[5].display_name | Rectangle |
| concepts[6].id | https://openalex.org/C311688 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5419560074806213 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2393193 |
| concepts[6].display_name | Time complexity |
| concepts[7].id | https://openalex.org/C42812 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5150542259216309 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[7].display_name | Partition (number theory) |
| concepts[8].id | https://openalex.org/C165064840 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46974045038223267 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[8].display_name | Matching (statistics) |
| concepts[9].id | https://openalex.org/C70710897 |
| concepts[9].level | 2 |
| concepts[9].score | 0.465320348739624 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q680081 |
| concepts[9].display_name | Separable space |
| concepts[10].id | https://openalex.org/C134516590 |
| concepts[10].level | 3 |
| concepts[10].score | 0.46469801664352417 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q475603 |
| concepts[10].display_name | Set packing |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4399656355381012 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C2778112365 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42732366919517517 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[12].display_name | Sequence (biology) |
| concepts[13].id | https://openalex.org/C177264268 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3312610983848572 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[13].display_name | Set (abstract data type) |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.21917715668678284 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C156273044 |
| concepts[15].level | 2 |
| concepts[15].score | 0.21719807386398315 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4913766 |
| concepts[15].display_name | Bin |
| concepts[16].id | https://openalex.org/C41008148 |
| concepts[16].level | 0 |
| concepts[16].score | 0.14986968040466309 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[16].display_name | Computer science |
| concepts[17].id | https://openalex.org/C134306372 |
| concepts[17].level | 1 |
| concepts[17].score | 0.09300640225410461 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[17].display_name | Mathematical analysis |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| concepts[21].id | https://openalex.org/C54355233 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[21].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/packing-problems |
| keywords[0].score | 0.8298453688621521 |
| keywords[0].display_name | Packing problems |
| keywords[1].id | https://openalex.org/keywords/combinatorics |
| keywords[1].score | 0.6926334500312805 |
| keywords[1].display_name | Combinatorics |
| keywords[2].id | https://openalex.org/keywords/approximation-algorithm |
| keywords[2].score | 0.6721629500389099 |
| keywords[2].display_name | Approximation algorithm |
| keywords[3].id | https://openalex.org/keywords/bin-packing-problem |
| keywords[3].score | 0.667870044708252 |
| keywords[3].display_name | Bin packing problem |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.6292518973350525 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/rectangle |
| keywords[5].score | 0.5847084522247314 |
| keywords[5].display_name | Rectangle |
| keywords[6].id | https://openalex.org/keywords/time-complexity |
| keywords[6].score | 0.5419560074806213 |
| keywords[6].display_name | Time complexity |
| keywords[7].id | https://openalex.org/keywords/partition |
| keywords[7].score | 0.5150542259216309 |
| keywords[7].display_name | Partition (number theory) |
| keywords[8].id | https://openalex.org/keywords/matching |
| keywords[8].score | 0.46974045038223267 |
| keywords[8].display_name | Matching (statistics) |
| keywords[9].id | https://openalex.org/keywords/separable-space |
| keywords[9].score | 0.465320348739624 |
| keywords[9].display_name | Separable space |
| keywords[10].id | https://openalex.org/keywords/set-packing |
| keywords[10].score | 0.46469801664352417 |
| keywords[10].display_name | Set packing |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.4399656355381012 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/sequence |
| keywords[12].score | 0.42732366919517517 |
| keywords[12].display_name | Sequence (biology) |
| keywords[13].id | https://openalex.org/keywords/set |
| keywords[13].score | 0.3312610983848572 |
| keywords[13].display_name | Set (abstract data type) |
| keywords[14].id | https://openalex.org/keywords/geometry |
| keywords[14].score | 0.21917715668678284 |
| keywords[14].display_name | Geometry |
| keywords[15].id | https://openalex.org/keywords/bin |
| keywords[15].score | 0.21719807386398315 |
| keywords[15].display_name | Bin |
| keywords[16].id | https://openalex.org/keywords/computer-science |
| keywords[16].score | 0.14986968040466309 |
| keywords[16].display_name | Computer science |
| keywords[17].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[17].score | 0.09300640225410461 |
| keywords[17].display_name | Mathematical analysis |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.05989 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.05989 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.05989 |
| locations[1].id | doi:10.48550/arxiv.2202.05989 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.05989 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5085907661 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7505-1687 |
| authorships[0].author.display_name | Arindam Khan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khan, Arindam |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5018175439 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-0067-6201 |
| authorships[1].author.display_name | Aditya Lonkar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lonkar, Aditya |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5041410467 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9142-6255 |
| authorships[2].author.display_name | Arnab Maiti |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Maiti, Arnab |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5076712235 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1392-7174 |
| authorships[3].author.display_name | Amatya Sharma |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sharma, Amatya |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067503013 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3705-016X |
| authorships[4].author.display_name | Andreas Wiese |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wiese, Andreas |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.05989 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Tight Approximation Algorithms for Two Dimensional Guillotine Strip Packing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12176 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Optimization and Packing Problems |
| related_works | https://openalex.org/W2078833192, https://openalex.org/W2398075730, https://openalex.org/W1969434948, https://openalex.org/W2170039532, https://openalex.org/W1442399089, https://openalex.org/W2117588054, https://openalex.org/W1992286013, https://openalex.org/W2978859203, https://openalex.org/W2042249499, https://openalex.org/W1528087381 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.05989 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.05989 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.05989 |
| primary_location.id | pmh:oai:arXiv.org:2202.05989 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.05989 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.05989 |
| publication_date | 2022-02-12 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 48 |
| abstract_inverted_index.a | 9, 14, 30, 77, 150, 161, 176, 187, 203 |
| abstract_inverted_index.In | 0, 94 |
| abstract_inverted_index.We | 174 |
| abstract_inverted_index.as | 171, 197 |
| abstract_inverted_index.at | 22 |
| abstract_inverted_index.be | 72, 122 |
| abstract_inverted_index.by | 74 |
| abstract_inverted_index.do | 86 |
| abstract_inverted_index.in | 68, 210 |
| abstract_inverted_index.is | 27, 46, 55, 143, 157, 195, 199 |
| abstract_inverted_index.it | 142, 156, 198 |
| abstract_inverted_index.of | 16, 20, 33, 43, 79, 91, 220 |
| abstract_inverted_index.on | 137 |
| abstract_inverted_index.to | 28, 56, 121, 149, 159, 201 |
| abstract_inverted_index.we | 6, 97, 114, 185 |
| abstract_inverted_index.$n$ | 17 |
| abstract_inverted_index.Bin | 130 |
| abstract_inverted_index.GSP | 166, 221 |
| abstract_inverted_index.The | 25 |
| abstract_inverted_index.all | 34 |
| abstract_inverted_index.and | 13, 50, 133, 140, 226 |
| abstract_inverted_index.any | 89, 168 |
| abstract_inverted_index.are | 7, 62 |
| abstract_inverted_index.can | 71 |
| abstract_inverted_index.due | 148 |
| abstract_inverted_index.for | 101, 165, 167, 182, 192, 206, 222 |
| abstract_inverted_index.not | 87 |
| abstract_inverted_index.our | 214 |
| abstract_inverted_index.set | 15 |
| abstract_inverted_index.the | 1, 37, 41, 44, 69, 92, 102, 109, 118, 128, 153, 218, 224, 227 |
| abstract_inverted_index.$W$. | 24 |
| abstract_inverted_index.GSP. | 183, 193 |
| abstract_inverted_index.This | 125, 194 |
| abstract_inverted_index.also | 134 |
| abstract_inverted_index.both | 223 |
| abstract_inverted_index.cuts | 82 |
| abstract_inverted_index.find | 29 |
| abstract_inverted_index.from | 152 |
| abstract_inverted_index.goal | 26 |
| abstract_inverted_index.into | 36 |
| abstract_inverted_index.item | 90 |
| abstract_inverted_index.most | 23 |
| abstract_inverted_index.only | 58 |
| abstract_inverted_index.such | 39 |
| abstract_inverted_index.that | 40, 61, 85, 117 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.thus | 141 |
| abstract_inverted_index.time | 179, 189 |
| abstract_inverted_index.used | 52 |
| abstract_inverted_index.(SP), | 5 |
| abstract_inverted_index.Strip | 2, 104, 110, 172, 208 |
| abstract_inverted_index.Thus, | 213 |
| abstract_inverted_index.allow | 57 |
| abstract_inverted_index.cuts) | 84 |
| abstract_inverted_index.every | 66 |
| abstract_inverted_index.given | 8 |
| abstract_inverted_index.i.e., | 65, 108 |
| abstract_inverted_index.needs | 120 |
| abstract_inverted_index.strip | 38 |
| abstract_inverted_index.study | 98 |
| abstract_inverted_index.those | 59 |
| abstract_inverted_index.time. | 212 |
| abstract_inverted_index.where | 113 |
| abstract_inverted_index.width | 21 |
| abstract_inverted_index.(GSP), | 107 |
| abstract_inverted_index.height | 42 |
| abstract_inverted_index.obtain | 160, 202 |
| abstract_inverted_index.paper, | 96 |
| abstract_inverted_index.settle | 217 |
| abstract_inverted_index.NP-hard | 158, 200 |
| abstract_inverted_index.Packing | 3, 105, 111, 131, 209 |
| abstract_inverted_index.already | 144 |
| abstract_inverted_index.packing | 32, 45, 70, 119 |
| abstract_inverted_index.present | 186 |
| abstract_inverted_index.problem | 4, 106, 112, 126, 132 |
| abstract_inverted_index.provide | 175 |
| abstract_inverted_index.require | 115 |
| abstract_inverted_index.results | 215 |
| abstract_inverted_index.(exactly | 170 |
| abstract_inverted_index.NP-hard. | 146 |
| abstract_inverted_index.applying | 76 |
| abstract_inverted_index.makespan | 135 |
| abstract_inverted_index.matching | 177 |
| abstract_inverted_index.obtained | 73 |
| abstract_inverted_index.packings | 60 |
| abstract_inverted_index.problem, | 155 |
| abstract_inverted_index.sequence | 78 |
| abstract_inverted_index.strongly | 145 |
| abstract_inverted_index.vertical | 10 |
| abstract_inverted_index.(general) | 207 |
| abstract_inverted_index.Moreover, | 147 |
| abstract_inverted_index.Packing). | 173 |
| abstract_inverted_index.Partition | 154 |
| abstract_inverted_index.algorithm | 164, 181, 191, 205 |
| abstract_inverted_index.classical | 129 |
| abstract_inverted_index.identical | 138 |
| abstract_inverted_index.intersect | 88 |
| abstract_inverted_index.machines, | 139 |
| abstract_inverted_index.practical | 53 |
| abstract_inverted_index.rectangle | 67 |
| abstract_inverted_index.reduction | 151 |
| abstract_inverted_index.settings. | 229 |
| abstract_inverted_index.solution. | 93 |
| abstract_inverted_index.Guillotine | 103 |
| abstract_inverted_index.algorithms | 100 |
| abstract_inverted_index.constraint | 54 |
| abstract_inverted_index.frequently | 51 |
| abstract_inverted_index.guillotine | 63, 123 |
| abstract_inverted_index.half-strip | 11 |
| abstract_inverted_index.minimized. | 47 |
| abstract_inverted_index.polynomial | 178, 225 |
| abstract_inverted_index.rectangles | 19, 35 |
| abstract_inverted_index.separable, | 64 |
| abstract_inverted_index.separable. | 124 |
| abstract_inverted_index.surprising | 196 |
| abstract_inverted_index.(guillotine | 83 |
| abstract_inverted_index.essentially | 216 |
| abstract_inverted_index.generalizes | 127 |
| abstract_inverted_index.recursively | 75 |
| abstract_inverted_index.Furthermore, | 184 |
| abstract_inverted_index.additionally | 116 |
| abstract_inverted_index.axis-aligned | 18 |
| abstract_inverted_index.edge-to-edge | 80 |
| abstract_inverted_index.minimization | 136 |
| abstract_inverted_index.well-studied | 49 |
| abstract_inverted_index.approximation | 99 |
| abstract_inverted_index.axis-parallel | 81 |
| abstract_inverted_index.approximability | 219 |
| abstract_inverted_index.non-overlapping | 31 |
| abstract_inverted_index.polynomial-time | 162 |
| abstract_inverted_index.pseudo-polynomial | 188, 211, 228 |
| abstract_inverted_index.$\varepsilon>0$ | 169 |
| abstract_inverted_index.$[0,W]\times[0,\infty)$ | 12 |
| abstract_inverted_index.$(1+\varepsilon)$-approximation | 190 |
| abstract_inverted_index.$(3/2+\varepsilon)$-approximation | 180 |
| abstract_inverted_index.$(3/2-\varepsilon)$-approximation | 163 |
| abstract_inverted_index.$(5/4-\varepsilon)$-approximation | 204 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |