Tilted biorthogonal ensembles, Grothendieck random partitions, and determinantal tests Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s00029-024-00945-3
We study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are not determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the $$4\times 4$$ problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size $$n\ge 4$$ , which appear new for $$n\ge 5$$ . By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00029-024-00945-3
- https://link.springer.com/content/pdf/10.1007/s00029-024-00945-3.pdf
- OA Status
- hybrid
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399495873
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399495873Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00029-024-00945-3Digital Object Identifier
- Title
-
Tilted biorthogonal ensembles, Grothendieck random partitions, and determinantal testsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-10Full publication date if available
- Authors
-
Svetlana Gavrilova, Leonid PetrovList of authors in order
- Landing page
-
https://doi.org/10.1007/s00029-024-00945-3Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s00029-024-00945-3.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s00029-024-00945-3.pdfDirect OA link when available
- Concepts
-
Biorthogonal system, Mathematics, Combinatorics, Determinantal point process, Statistical physics, Pure mathematics, Random matrix, Computer science, Physics, Artificial intelligence, Quantum mechanics, Eigenvalues and eigenvectors, Wavelet, Wavelet transformTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399495873 |
|---|---|
| doi | https://doi.org/10.1007/s00029-024-00945-3 |
| ids.doi | https://doi.org/10.1007/s00029-024-00945-3 |
| ids.openalex | https://openalex.org/W4399495873 |
| fwci | 0.0 |
| type | article |
| title | Tilted biorthogonal ensembles, Grothendieck random partitions, and determinantal tests |
| biblio.issue | 3 |
| biblio.volume | 30 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11716 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Random Matrices and Applications |
| topics[1].id | https://openalex.org/T10948 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2607 |
| topics[1].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[1].display_name | Advanced Combinatorial Mathematics |
| topics[2].id | https://openalex.org/T11680 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9922999739646912 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2610 |
| topics[2].subfield.display_name | Mathematical Physics |
| topics[2].display_name | Advanced Algebra and Geometry |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C158453530 |
| concepts[0].level | 4 |
| concepts[0].score | 0.8062703609466553 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q864692 |
| concepts[0].display_name | Biorthogonal system |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6721236705780029 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C114614502 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5070343017578125 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[2].display_name | Combinatorics |
| concepts[3].id | https://openalex.org/C72010251 |
| concepts[3].level | 4 |
| concepts[3].score | 0.49771812558174133 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5265688 |
| concepts[3].display_name | Determinantal point process |
| concepts[4].id | https://openalex.org/C121864883 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3865431845188141 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[4].display_name | Statistical physics |
| concepts[5].id | https://openalex.org/C202444582 |
| concepts[5].level | 1 |
| concepts[5].score | 0.36823683977127075 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[5].display_name | Pure mathematics |
| concepts[6].id | https://openalex.org/C64812099 |
| concepts[6].level | 3 |
| concepts[6].score | 0.24479681253433228 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q176604 |
| concepts[6].display_name | Random matrix |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.19957798719406128 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.17603632807731628 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1483403444290161 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07755038142204285 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| concepts[11].id | https://openalex.org/C158693339 |
| concepts[11].level | 2 |
| concepts[11].score | 0.07747721672058105 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q190524 |
| concepts[11].display_name | Eigenvalues and eigenvectors |
| concepts[12].id | https://openalex.org/C47432892 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[12].display_name | Wavelet |
| concepts[13].id | https://openalex.org/C196216189 |
| concepts[13].level | 3 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[13].display_name | Wavelet transform |
| keywords[0].id | https://openalex.org/keywords/biorthogonal-system |
| keywords[0].score | 0.8062703609466553 |
| keywords[0].display_name | Biorthogonal system |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.6721236705780029 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/combinatorics |
| keywords[2].score | 0.5070343017578125 |
| keywords[2].display_name | Combinatorics |
| keywords[3].id | https://openalex.org/keywords/determinantal-point-process |
| keywords[3].score | 0.49771812558174133 |
| keywords[3].display_name | Determinantal point process |
| keywords[4].id | https://openalex.org/keywords/statistical-physics |
| keywords[4].score | 0.3865431845188141 |
| keywords[4].display_name | Statistical physics |
| keywords[5].id | https://openalex.org/keywords/pure-mathematics |
| keywords[5].score | 0.36823683977127075 |
| keywords[5].display_name | Pure mathematics |
| keywords[6].id | https://openalex.org/keywords/random-matrix |
| keywords[6].score | 0.24479681253433228 |
| keywords[6].display_name | Random matrix |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.19957798719406128 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.17603632807731628 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.1483403444290161 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[10].score | 0.07755038142204285 |
| keywords[10].display_name | Quantum mechanics |
| keywords[11].id | https://openalex.org/keywords/eigenvalues-and-eigenvectors |
| keywords[11].score | 0.07747721672058105 |
| keywords[11].display_name | Eigenvalues and eigenvectors |
| language | en |
| locations[0].id | doi:10.1007/s00029-024-00945-3 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S112041929 |
| locations[0].source.issn | 1022-1824, 1420-9020 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1022-1824 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Selecta Mathematica |
| locations[0].source.host_organization | https://openalex.org/P4310320186 |
| locations[0].source.host_organization_name | Birkhäuser |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320186, https://openalex.org/P4310319900 |
| locations[0].source.host_organization_lineage_names | Birkhäuser, Springer Science+Business Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s00029-024-00945-3.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Selecta Mathematica |
| locations[0].landing_page_url | https://doi.org/10.1007/s00029-024-00945-3 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101490039 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1028-1566 |
| authorships[0].author.display_name | Svetlana Gavrilova |
| authorships[0].countries | RU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I118501908 |
| authorships[0].affiliations[0].raw_affiliation_string | HSE University, Moscow, Russia |
| authorships[0].institutions[0].id | https://openalex.org/I118501908 |
| authorships[0].institutions[0].ror | https://ror.org/055f7t516 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I118501908 |
| authorships[0].institutions[0].country_code | RU |
| authorships[0].institutions[0].display_name | National Research University Higher School of Economics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Svetlana Gavrilova |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | HSE University, Moscow, Russia |
| authorships[1].author.id | https://openalex.org/A5037874481 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9737-9667 |
| authorships[1].author.display_name | Leonid Petrov |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I51556381 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Virginia, Charlottesville, VA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I51556381 |
| authorships[1].institutions[0].ror | https://ror.org/0153tk833 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I51556381 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Virginia |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Leonid Petrov |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | University of Virginia, Charlottesville, VA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s00029-024-00945-3.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Tilted biorthogonal ensembles, Grothendieck random partitions, and determinantal tests |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11716 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Random Matrices and Applications |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2002704363, https://openalex.org/W2377588290, https://openalex.org/W2326317736, https://openalex.org/W2389135727, https://openalex.org/W1967763791, https://openalex.org/W2058719641, https://openalex.org/W1496843484, https://openalex.org/W2373313192, https://openalex.org/W1979714115 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s00029-024-00945-3 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S112041929 |
| best_oa_location.source.issn | 1022-1824, 1420-9020 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1022-1824 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Selecta Mathematica |
| best_oa_location.source.host_organization | https://openalex.org/P4310320186 |
| best_oa_location.source.host_organization_name | Birkhäuser |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320186, https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_lineage_names | Birkhäuser, Springer Science+Business Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00029-024-00945-3.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Selecta Mathematica |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00029-024-00945-3 |
| primary_location.id | doi:10.1007/s00029-024-00945-3 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S112041929 |
| primary_location.source.issn | 1022-1824, 1420-9020 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1022-1824 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Selecta Mathematica |
| primary_location.source.host_organization | https://openalex.org/P4310320186 |
| primary_location.source.host_organization_name | Birkhäuser |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320186, https://openalex.org/P4310319900 |
| primary_location.source.host_organization_lineage_names | Birkhäuser, Springer Science+Business Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00029-024-00945-3.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Selecta Mathematica |
| primary_location.landing_page_url | https://doi.org/10.1007/s00029-024-00945-3 |
| publication_date | 2024-06-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3200282830, https://openalex.org/W4211033058, https://openalex.org/W2085513853, https://openalex.org/W2098410896, https://openalex.org/W2058912430, https://openalex.org/W2962731184, https://openalex.org/W2963903428, https://openalex.org/W2962879024, https://openalex.org/W1999242698, https://openalex.org/W2962832864, https://openalex.org/W2963302691, https://openalex.org/W3037437854, https://openalex.org/W2962996671, https://openalex.org/W2033580007, https://openalex.org/W2791382371, https://openalex.org/W2962940702, https://openalex.org/W1991814714, https://openalex.org/W1967764902, https://openalex.org/W2887867217, https://openalex.org/W2084979773, https://openalex.org/W3176417626, https://openalex.org/W2135696439, https://openalex.org/W1982744781, https://openalex.org/W2963415950, https://openalex.org/W2141982996, https://openalex.org/W2091216084, https://openalex.org/W1492580686, https://openalex.org/W2043984109, https://openalex.org/W1665875856, https://openalex.org/W73817974, https://openalex.org/W2118974146, https://openalex.org/W6636849630, https://openalex.org/W2168316830, https://openalex.org/W2090755539, https://openalex.org/W2888846238, https://openalex.org/W2317423124, https://openalex.org/W2009395702, https://openalex.org/W2963279005, https://openalex.org/W3021709410, https://openalex.org/W2990318823, https://openalex.org/W2134984950, https://openalex.org/W3215647869, https://openalex.org/W1990635723, https://openalex.org/W2322772921, https://openalex.org/W1971292905, https://openalex.org/W2099875985, https://openalex.org/W2003688125, https://openalex.org/W2963065874, https://openalex.org/W2047493173, https://openalex.org/W1884272320, https://openalex.org/W2963955305, https://openalex.org/W2046035455, https://openalex.org/W1994361750, https://openalex.org/W2065944418, https://openalex.org/W1991159772, https://openalex.org/W2133549435, https://openalex.org/W3044388970, https://openalex.org/W1986582777, https://openalex.org/W1663262497, https://openalex.org/W2223252080, https://openalex.org/W1553824818, https://openalex.org/W3101174546, https://openalex.org/W3104619925, https://openalex.org/W3104324249, https://openalex.org/W3099706877, https://openalex.org/W3105574818, https://openalex.org/W3101370348, https://openalex.org/W3100512510, https://openalex.org/W3101900497, https://openalex.org/W3098269420 |
| referenced_works_count | 70 |
| abstract_inverted_index., | 133 |
| abstract_inverted_index.. | 148 |
| abstract_inverted_index.A | 217 |
| abstract_inverted_index.B | 174 |
| abstract_inverted_index.a | 86, 111, 155, 163, 183, 186, 189, 225, 246, 268, 272 |
| abstract_inverted_index.By | 149 |
| abstract_inverted_index.We | 1, 108 |
| abstract_inverted_index.as | 182, 242, 245 |
| abstract_inverted_index.by | 39, 91, 170 |
| abstract_inverted_index.in | 18, 80, 93, 192 |
| abstract_inverted_index.is | 72, 238, 262 |
| abstract_inverted_index.it | 243 |
| abstract_inverted_index.of | 14, 21, 32, 48, 55, 120, 158, 166, 185, 201, 206, 248, 259, 267, 271 |
| abstract_inverted_index.on | 5, 8, 36 |
| abstract_inverted_index.to | 74, 223 |
| abstract_inverted_index.us | 222 |
| abstract_inverted_index.we | 60, 84, 177 |
| abstract_inverted_index.4$$ | 98, 124 |
| abstract_inverted_index.5$$ | 139 |
| abstract_inverted_index.Our | 27 |
| abstract_inverted_index.The | 234, 257 |
| abstract_inverted_index.and | 57, 83 |
| abstract_inverted_index.any | 121 |
| abstract_inverted_index.are | 30, 65, 210 |
| abstract_inverted_index.for | 51, 95, 113, 118, 137, 214, 229, 253 |
| abstract_inverted_index.new | 136, 156 |
| abstract_inverted_index.not | 66, 211, 239 |
| abstract_inverted_index.the | 19, 33, 46, 52, 75, 96, 151, 198, 230, 249, 254, 265 |
| abstract_inverted_index.two | 193 |
| abstract_inverted_index.(Sel | 41 |
| abstract_inverted_index.1897 | 94 |
| abstract_inverted_index.Math | 42 |
| abstract_inverted_index.Phys | 173 |
| abstract_inverted_index.This | 70, 195 |
| abstract_inverted_index.also | 109 |
| abstract_inverted_index.into | 154 |
| abstract_inverted_index.many | 24 |
| abstract_inverted_index.more | 218 |
| abstract_inverted_index.rich | 164 |
| abstract_inverted_index.root | 270 |
| abstract_inverted_index.size | 122 |
| abstract_inverted_index.sums | 205 |
| abstract_inverted_index.test | 88 |
| abstract_inverted_index.that | 62 |
| abstract_inverted_index.this | 260 |
| abstract_inverted_index.(Nucl | 172 |
| abstract_inverted_index.Schur | 15, 34, 56, 187, 255 |
| abstract_inverted_index.These | 12 |
| abstract_inverted_index.based | 7 |
| abstract_inverted_index.class | 165 |
| abstract_inverted_index.cubic | 273 |
| abstract_inverted_index.curve | 237 |
| abstract_inverted_index.first | 89 |
| abstract_inverted_index.limit | 226, 235, 250 |
| abstract_inverted_index.minor | 77 |
| abstract_inverted_index.point | 68 |
| abstract_inverted_index.shape | 227, 236, 251 |
| abstract_inverted_index.share | 23 |
| abstract_inverted_index.study | 2 |
| abstract_inverted_index.tests | 117 |
| abstract_inverted_index.which | 134, 209 |
| abstract_inverted_index.$$n\ge | 123, 138 |
| abstract_inverted_index.1998), | 176 |
| abstract_inverted_index.2001). | 44 |
| abstract_inverted_index.Nanson | 92 |
| abstract_inverted_index.allows | 221 |
| abstract_inverted_index.appear | 135 |
| abstract_inverted_index.arises | 244 |
| abstract_inverted_index.common | 25 |
| abstract_inverted_index.direct | 219 |
| abstract_inverted_index.employ | 85 |
| abstract_inverted_index.obtain | 224 |
| abstract_inverted_index.random | 180, 232 |
| abstract_inverted_index.result | 228 |
| abstract_inverted_index.tilted | 159 |
| abstract_inverted_index.Borodin | 171 |
| abstract_inverted_index.Despite | 45 |
| abstract_inverted_index.analogs | 31 |
| abstract_inverted_index.complex | 269 |
| abstract_inverted_index.getting | 114 |
| abstract_inverted_index.placing | 150 |
| abstract_inverted_index.problem | 79 |
| abstract_inverted_index.process | 191 |
| abstract_inverted_index.propose | 110 |
| abstract_inverted_index.related | 73 |
| abstract_inverted_index.surface | 252, 261 |
| abstract_inverted_index.through | 204, 264 |
| abstract_inverted_index.weights | 54 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Fredholm | 207 |
| abstract_inverted_index.K-theory | 20 |
| abstract_inverted_index.Okounkov | 40 |
| abstract_inverted_index.approach | 220 |
| abstract_inverted_index.argument | 266 |
| abstract_inverted_index.explicit | 241 |
| abstract_inverted_index.formulas | 50 |
| abstract_inverted_index.gradient | 258 |
| abstract_inverted_index.identify | 178 |
| abstract_inverted_index.matrices | 119 |
| abstract_inverted_index.measures | 4, 29, 35, 64, 153, 203 |
| abstract_inverted_index.obtained | 90 |
| abstract_inverted_index.problem. | 107 |
| abstract_inverted_index.process, | 188 |
| abstract_inverted_index.process. | 256 |
| abstract_inverted_index.question | 71 |
| abstract_inverted_index.suitable | 213 |
| abstract_inverted_index.$$4\times | 97 |
| abstract_inverted_index.<mml:math | 99, 125, 140 |
| abstract_inverted_index.algebraic | 81 |
| abstract_inverted_index.analysis. | 216 |
| abstract_inverted_index.ensembles | 161 |
| abstract_inverted_index.equation. | 274 |
| abstract_inverted_index.expressed | 263 |
| abstract_inverted_index.expresses | 197 |
| abstract_inverted_index.framework | 157 |
| abstract_inverted_index.functions | 200 |
| abstract_inverted_index.geometry, | 82 |
| abstract_inverted_index.measures, | 59 |
| abstract_inverted_index.principal | 76 |
| abstract_inverted_index.procedure | 112 |
| abstract_inverted_index.processes | 168 |
| abstract_inverted_index.symmetric | 9 |
| abstract_inverted_index.<mml:mrow> | 101, 127, 142 |
| abstract_inverted_index.assignment | 78 |
| abstract_inverted_index.asymptotic | 215 |
| abstract_inverted_index.introduced | 17, 38, 169 |
| abstract_inverted_index.partitions | 6, 37, 181 |
| abstract_inverted_index.processes. | 69 |
| abstract_inverted_index.similarity | 47 |
| abstract_inverted_index.</mml:math> | 106, 132, 147 |
| abstract_inverted_index.</mml:mrow> | 105, 131, 146 |
| abstract_inverted_index.Nanson-like | 115 |
| abstract_inverted_index.correlation | 199 |
| abstract_inverted_index.demonstrate | 61 |
| abstract_inverted_index.dimensions. | 194 |
| abstract_inverted_index.immediately | 212 |
| abstract_inverted_index.partitions. | 233 |
| abstract_inverted_index.polynomials | 16 |
| abstract_inverted_index.probability | 3, 53 |
| abstract_inverted_index.properties. | 26 |
| abstract_inverted_index.Grothendieck | 10, 28, 58, 63, 152, 179, 202, 231 |
| abstract_inverted_index.biorthogonal | 160 |
| abstract_inverted_index.deformations | 13 |
| abstract_inverted_index.generalizing | 162 |
| abstract_inverted_index.particularly | 240 |
| abstract_inverted_index.polynomials. | 11 |
| abstract_inverted_index.7(1):57–81, | 43 |
| abstract_inverted_index.Grassmannians | 22 |
| abstract_inverted_index.cross-section | 184, 247 |
| abstract_inverted_index.determinantal | 49, 67, 87, 116, 167, 190 |
| abstract_inverted_index.determinants, | 208 |
| abstract_inverted_index.536:704–732, | 175 |
| abstract_inverted_index.identification | 196 |
| abstract_inverted_index.<mml:mi>n</mml:mi> | 128, 143 |
| abstract_inverted_index.<mml:mn>4</mml:mn> | 102, 104, 130 |
| abstract_inverted_index.<mml:mn>5</mml:mn> | 145 |
| abstract_inverted_index.<mml:mo>×</mml:mo> | 103 |
| abstract_inverted_index.<mml:mo>≥</mml:mo> | 129, 144 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML"> | 100, 126, 141 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5037874481 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I51556381 |
| citation_normalized_percentile.value | 0.11022855 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |