Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.32604/cmc.2024.048119
A consumption of 46.9 million tons of processed tomatoes was reported in 2022 which is merely 20% of the total consumption.An increase of 3.3% in consumption is predicted from 2024 to 2032.Tomatoes are also rich in iron, potassium, antioxidant lycopene, vitamins A, C and K which are important for preventing cancer, and maintaining blood pressure and glucose levels.Thus, tomatoes are globally important due to their widespread usage and nutritional value.To face the high demand for tomatoes, it is mandatory to investigate the causes of crop loss and minimize them.Diseases are one of the major causes that adversely affect crop yield and degrade the quality of the tomato fruit.This leads to financial losses and affects the livelihood of farmers.Therefore, automatic disease detection at any stage of the tomato plant is a critical issue.Deep learning models introduced in the literature show promising results, but the models are difficult to implement on handheld devices such as mobile phones due to high computational costs and a large number of parameters.Also, most of the models proposed so far work efficiently for images with plain backgrounds where a clear demarcation exists between the background and leaf region.Moreover, the existing techniques lack in recognizing multiple diseases on the same leaf.To address these concerns, we introduce a customized deep learning-based convolution vision transformer model.The model achieves an accuracy of 93.51% for classifying tomato leaf images with plain as well as complex backgrounds into 13 categories.It requires a space storage of merely 5.8 MB which is 98.93%, 98.33%, and 92.64% less than stateof-the-art visual geometry group, vision transformers, and convolution vision transformer models, respectively.Its training time of 44 min is 51.12%, 74.12%, and 57.7% lower than the above-mentioned models.Thus, it can be deployed on (Internet of Things) IoT-enabled devices, drones, or mobile devices to assist farmers in the real-time monitoring of tomato crops.The periodic monitoring promotes timely action to prevent the spread of diseases and reduce crop loss.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/cmc.2024.048119
- https://www.techscience.com/cmc/online/detail/20372/pdf
- OA Status
- diamond
- Cited By
- 22
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394772467
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394772467Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/cmc.2024.048119Digital Object Identifier
- Title
-
Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied BackgroundsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Ankita Gangwar, Vijaypal Singh Dhaka, Geeta Rani, Shrey Khandelwal, Ester Zumpano, Eugenio VocaturoList of authors in order
- Landing page
-
https://doi.org/10.32604/cmc.2024.048119Publisher landing page
- PDF URL
-
https://www.techscience.com/cmc/online/detail/20372/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.techscience.com/cmc/online/detail/20372/pdfDirect OA link when available
- Concepts
-
Lycopene, Agricultural engineering, Deep learning, Computer science, Mobile device, Artificial intelligence, Pixel, Transformer, Carotenoid, Biology, Engineering, Botany, Voltage, Electrical engineering, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 9Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394772467 |
|---|---|
| doi | https://doi.org/10.32604/cmc.2024.048119 |
| ids.doi | https://doi.org/10.32604/cmc.2024.048119 |
| ids.openalex | https://openalex.org/W4394772467 |
| fwci | 17.20507969 |
| type | article |
| title | Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds |
| biblio.issue | 1 |
| biblio.volume | 79 |
| biblio.last_page | 142 |
| biblio.first_page | 117 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T14365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9923999905586243 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Leaf Properties and Growth Measurement |
| topics[2].id | https://openalex.org/T12093 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9855999946594238 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Greenhouse Technology and Climate Control |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780022147 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6745474934577942 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q208130 |
| concepts[0].display_name | Lycopene |
| concepts[1].id | https://openalex.org/C88463610 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5303647518157959 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[1].display_name | Agricultural engineering |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5249077081680298 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5070571899414062 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C186967261 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49202701449394226 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5082128 |
| concepts[4].display_name | Mobile device |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46506765484809875 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C160633673 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4434615671634674 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[6].display_name | Pixel |
| concepts[7].id | https://openalex.org/C66322947 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4141542613506317 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[7].display_name | Transformer |
| concepts[8].id | https://openalex.org/C28781525 |
| concepts[8].level | 2 |
| concepts[8].score | 0.33885931968688965 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q191907 |
| concepts[8].display_name | Carotenoid |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.21717843413352966 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.17752045392990112 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C59822182 |
| concepts[11].level | 1 |
| concepts[11].score | 0.15258312225341797 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[11].display_name | Botany |
| concepts[12].id | https://openalex.org/C165801399 |
| concepts[12].level | 2 |
| concepts[12].score | 0.11168283224105835 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[12].display_name | Voltage |
| concepts[13].id | https://openalex.org/C119599485 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[13].display_name | Electrical engineering |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/lycopene |
| keywords[0].score | 0.6745474934577942 |
| keywords[0].display_name | Lycopene |
| keywords[1].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[1].score | 0.5303647518157959 |
| keywords[1].display_name | Agricultural engineering |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.5249077081680298 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5070571899414062 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/mobile-device |
| keywords[4].score | 0.49202701449394226 |
| keywords[4].display_name | Mobile device |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.46506765484809875 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/pixel |
| keywords[6].score | 0.4434615671634674 |
| keywords[6].display_name | Pixel |
| keywords[7].id | https://openalex.org/keywords/transformer |
| keywords[7].score | 0.4141542613506317 |
| keywords[7].display_name | Transformer |
| keywords[8].id | https://openalex.org/keywords/carotenoid |
| keywords[8].score | 0.33885931968688965 |
| keywords[8].display_name | Carotenoid |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.21717843413352966 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.17752045392990112 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/botany |
| keywords[11].score | 0.15258312225341797 |
| keywords[11].display_name | Botany |
| keywords[12].id | https://openalex.org/keywords/voltage |
| keywords[12].score | 0.11168283224105835 |
| keywords[12].display_name | Voltage |
| language | en |
| locations[0].id | doi:10.32604/cmc.2024.048119 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191605 |
| locations[0].source.issn | 1546-2218, 1546-2226 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1546-2218 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://www.techscience.com/cmc/online/detail/20372/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computers, Materials & Continua |
| locations[0].landing_page_url | https://doi.org/10.32604/cmc.2024.048119 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5018730611 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3511-8167 |
| authorships[0].author.display_name | Ankita Gangwar |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India |
| authorships[0].institutions[0].id | https://openalex.org/I73779912 |
| authorships[0].institutions[0].ror | https://ror.org/040h76494 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Manipal University Jaipur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ankita Gangwar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India |
| authorships[1].author.id | https://openalex.org/A5108541054 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Vijaypal Singh Dhaka |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India |
| authorships[1].institutions[0].id | https://openalex.org/I73779912 |
| authorships[1].institutions[0].ror | https://ror.org/040h76494 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Manipal University Jaipur |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Vijaypal Singh Dhaka |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India |
| authorships[2].author.id | https://openalex.org/A5057070686 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4513-2109 |
| authorships[2].author.display_name | Geeta Rani |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210146682, https://openalex.org/I73779912 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of IoT and Intelligent Systems, Manipal University Jaipur, Jaipur, India |
| authorships[2].institutions[0].id | https://openalex.org/I73779912 |
| authorships[2].institutions[0].ror | https://ror.org/040h76494 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Manipal University Jaipur |
| authorships[2].institutions[1].id | https://openalex.org/I4210146682 |
| authorships[2].institutions[1].ror | https://ror.org/04f2n1245 |
| authorships[2].institutions[1].type | company |
| authorships[2].institutions[1].lineage | https://openalex.org/I1343180700, https://openalex.org/I4210146682 |
| authorships[2].institutions[1].country_code | IN |
| authorships[2].institutions[1].display_name | Intel (India) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Geeta Rani |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of IoT and Intelligent Systems, Manipal University Jaipur, Jaipur, India |
| authorships[3].author.id | https://openalex.org/A5093120590 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Shrey Khandelwal |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I73779912 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India |
| authorships[3].institutions[0].id | https://openalex.org/I73779912 |
| authorships[3].institutions[0].ror | https://ror.org/040h76494 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I73779912 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Manipal University Jaipur |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shrey Khandelwal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India |
| authorships[4].author.id | https://openalex.org/A5007343580 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1129-3737 |
| authorships[4].author.display_name | Ester Zumpano |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I45204951 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Modelling, Electronics and Systems (DIMES), University of Calabria, Rende (Cosenza), Italy |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210091015, https://openalex.org/I4210155236 |
| authorships[4].affiliations[1].raw_affiliation_string | National Research Council, Institute of Nanotechnology (NANOTEC), Rende (Cosenza), Italy |
| authorships[4].institutions[0].id | https://openalex.org/I4210091015 |
| authorships[4].institutions[0].ror | https://ror.org/00bc51d88 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210091015, https://openalex.org/I4210155236 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | Istituto di Nanotecnologia |
| authorships[4].institutions[1].id | https://openalex.org/I4210155236 |
| authorships[4].institutions[1].ror | https://ror.org/04zaypm56 |
| authorships[4].institutions[1].type | nonprofit |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210155236 |
| authorships[4].institutions[1].country_code | IT |
| authorships[4].institutions[1].display_name | National Research Council |
| authorships[4].institutions[2].id | https://openalex.org/I45204951 |
| authorships[4].institutions[2].ror | https://ror.org/02rc97e94 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I45204951 |
| authorships[4].institutions[2].country_code | IT |
| authorships[4].institutions[2].display_name | University of Calabria |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ester Zumpano |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Engineering, Modelling, Electronics and Systems (DIMES), University of Calabria, Rende (Cosenza), Italy, National Research Council, Institute of Nanotechnology (NANOTEC), Rende (Cosenza), Italy |
| authorships[5].author.id | https://openalex.org/A5058705554 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7457-7118 |
| authorships[5].author.display_name | Eugenio Vocaturo |
| authorships[5].countries | IT |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I45204951 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Engineering, Modelling, Electronics and Systems (DIMES), University of Calabria, Rende (Cosenza), Italy |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210091015, https://openalex.org/I4210155236 |
| authorships[5].affiliations[1].raw_affiliation_string | National Research Council, Institute of Nanotechnology (NANOTEC), Rende (Cosenza), Italy |
| authorships[5].institutions[0].id | https://openalex.org/I4210091015 |
| authorships[5].institutions[0].ror | https://ror.org/00bc51d88 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210091015, https://openalex.org/I4210155236 |
| authorships[5].institutions[0].country_code | IT |
| authorships[5].institutions[0].display_name | Istituto di Nanotecnologia |
| authorships[5].institutions[1].id | https://openalex.org/I4210155236 |
| authorships[5].institutions[1].ror | https://ror.org/04zaypm56 |
| authorships[5].institutions[1].type | nonprofit |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210155236 |
| authorships[5].institutions[1].country_code | IT |
| authorships[5].institutions[1].display_name | National Research Council |
| authorships[5].institutions[2].id | https://openalex.org/I45204951 |
| authorships[5].institutions[2].ror | https://ror.org/02rc97e94 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I45204951 |
| authorships[5].institutions[2].country_code | IT |
| authorships[5].institutions[2].display_name | University of Calabria |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Eugenio Vocaturo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Engineering, Modelling, Electronics and Systems (DIMES), University of Calabria, Rende (Cosenza), Italy, National Research Council, Institute of Nanotechnology (NANOTEC), Rende (Cosenza), Italy |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.techscience.com/cmc/online/detail/20372/pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W1965923772, https://openalex.org/W2057245640, https://openalex.org/W2356268598, https://openalex.org/W1503266237, https://openalex.org/W2760619494, https://openalex.org/W2030708082, https://openalex.org/W1989047901, https://openalex.org/W4404844938, https://openalex.org/W2993447140, https://openalex.org/W1979623899 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/cmc.2024.048119 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191605 |
| best_oa_location.source.issn | 1546-2218, 1546-2226 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1546-2218 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://www.techscience.com/cmc/online/detail/20372/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computers, Materials & Continua |
| best_oa_location.landing_page_url | https://doi.org/10.32604/cmc.2024.048119 |
| primary_location.id | doi:10.32604/cmc.2024.048119 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191605 |
| primary_location.source.issn | 1546-2218, 1546-2226 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1546-2218 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computers, materials & continua/Computers, materials & continua (Print) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://www.techscience.com/cmc/online/detail/20372/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computers, Materials & Continua |
| primary_location.landing_page_url | https://doi.org/10.32604/cmc.2024.048119 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3025449582, https://openalex.org/W3164810600, https://openalex.org/W3209845747, https://openalex.org/W3155966371, https://openalex.org/W3033272228, https://openalex.org/W3178340391, https://openalex.org/W2473156356, https://openalex.org/W2789255992, https://openalex.org/W2808709127, https://openalex.org/W6788477181, https://openalex.org/W6791943378, https://openalex.org/W2911433502, https://openalex.org/W6806526917, https://openalex.org/W3195569425, https://openalex.org/W3016522735, https://openalex.org/W6783259068, https://openalex.org/W3215064021, https://openalex.org/W3163885127, https://openalex.org/W3119462501, https://openalex.org/W3172544793, https://openalex.org/W3173170759, https://openalex.org/W3132328762, https://openalex.org/W6806236022, https://openalex.org/W6806507277, https://openalex.org/W4303627739, https://openalex.org/W4310454508, https://openalex.org/W2339460098, https://openalex.org/W6769067429, https://openalex.org/W6891870182, https://openalex.org/W4366827437, https://openalex.org/W4200253680, https://openalex.org/W6792244202, https://openalex.org/W6637373629, https://openalex.org/W3005426330, https://openalex.org/W2782434976, https://openalex.org/W6687483927, https://openalex.org/W2786538427, https://openalex.org/W2519116646, https://openalex.org/W4362610262, https://openalex.org/W4214493665, https://openalex.org/W3121523901, https://openalex.org/W4206342595, https://openalex.org/W4205920687, https://openalex.org/W3106505022, https://openalex.org/W4206338051, https://openalex.org/W3088352450, https://openalex.org/W2194775991 |
| referenced_works_count | 47 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.C | 42 |
| abstract_inverted_index.K | 44 |
| abstract_inverted_index.a | 129, 161, 181, 208, 238 |
| abstract_inverted_index.13 | 235 |
| abstract_inverted_index.44 | 268 |
| abstract_inverted_index.A, | 41 |
| abstract_inverted_index.MB | 244 |
| abstract_inverted_index.an | 218 |
| abstract_inverted_index.as | 152, 229, 231 |
| abstract_inverted_index.at | 121 |
| abstract_inverted_index.be | 282 |
| abstract_inverted_index.in | 11, 24, 35, 135, 195, 297 |
| abstract_inverted_index.is | 14, 26, 77, 128, 246, 270 |
| abstract_inverted_index.it | 76, 280 |
| abstract_inverted_index.of | 2, 6, 17, 22, 83, 91, 104, 116, 124, 164, 167, 220, 241, 267, 286, 301, 313 |
| abstract_inverted_index.on | 148, 199, 284 |
| abstract_inverted_index.or | 291 |
| abstract_inverted_index.so | 171 |
| abstract_inverted_index.to | 30, 63, 79, 109, 146, 156, 294, 309 |
| abstract_inverted_index.we | 206 |
| abstract_inverted_index.20% | 16 |
| abstract_inverted_index.5.8 | 243 |
| abstract_inverted_index.and | 43, 51, 55, 67, 86, 100, 112, 160, 188, 249, 259, 273, 315 |
| abstract_inverted_index.any | 122 |
| abstract_inverted_index.are | 32, 46, 59, 89, 144 |
| abstract_inverted_index.but | 141 |
| abstract_inverted_index.can | 281 |
| abstract_inverted_index.due | 62, 155 |
| abstract_inverted_index.far | 172 |
| abstract_inverted_index.for | 48, 74, 175, 222 |
| abstract_inverted_index.min | 269 |
| abstract_inverted_index.one | 90 |
| abstract_inverted_index.the | 18, 71, 81, 92, 102, 105, 114, 125, 136, 142, 168, 186, 191, 200, 277, 298, 311 |
| abstract_inverted_index.was | 9 |
| abstract_inverted_index.2022 | 12 |
| abstract_inverted_index.2024 | 29 |
| abstract_inverted_index.3.3% | 23 |
| abstract_inverted_index.46.9 | 3 |
| abstract_inverted_index.also | 33 |
| abstract_inverted_index.crop | 84, 98, 317 |
| abstract_inverted_index.deep | 210 |
| abstract_inverted_index.face | 70 |
| abstract_inverted_index.from | 28 |
| abstract_inverted_index.high | 72, 157 |
| abstract_inverted_index.into | 234 |
| abstract_inverted_index.lack | 194 |
| abstract_inverted_index.leaf | 189, 225 |
| abstract_inverted_index.less | 251 |
| abstract_inverted_index.loss | 85 |
| abstract_inverted_index.most | 166 |
| abstract_inverted_index.rich | 34 |
| abstract_inverted_index.same | 201 |
| abstract_inverted_index.show | 138 |
| abstract_inverted_index.such | 151 |
| abstract_inverted_index.than | 252, 276 |
| abstract_inverted_index.that | 95 |
| abstract_inverted_index.time | 266 |
| abstract_inverted_index.tons | 5 |
| abstract_inverted_index.well | 230 |
| abstract_inverted_index.with | 177, 227 |
| abstract_inverted_index.work | 173 |
| abstract_inverted_index.57.7% | 274 |
| abstract_inverted_index.blood | 53 |
| abstract_inverted_index.clear | 182 |
| abstract_inverted_index.costs | 159 |
| abstract_inverted_index.iron, | 36 |
| abstract_inverted_index.large | 162 |
| abstract_inverted_index.leads | 108 |
| abstract_inverted_index.loss. | 318 |
| abstract_inverted_index.lower | 275 |
| abstract_inverted_index.major | 93 |
| abstract_inverted_index.model | 216 |
| abstract_inverted_index.plain | 178, 228 |
| abstract_inverted_index.plant | 127 |
| abstract_inverted_index.space | 239 |
| abstract_inverted_index.stage | 123 |
| abstract_inverted_index.their | 64 |
| abstract_inverted_index.these | 204 |
| abstract_inverted_index.total | 19 |
| abstract_inverted_index.usage | 66 |
| abstract_inverted_index.where | 180 |
| abstract_inverted_index.which | 13, 45, 245 |
| abstract_inverted_index.yield | 99 |
| abstract_inverted_index.92.64% | 250 |
| abstract_inverted_index.93.51% | 221 |
| abstract_inverted_index.action | 308 |
| abstract_inverted_index.affect | 97 |
| abstract_inverted_index.assist | 295 |
| abstract_inverted_index.causes | 82, 94 |
| abstract_inverted_index.demand | 73 |
| abstract_inverted_index.exists | 184 |
| abstract_inverted_index.group, | 256 |
| abstract_inverted_index.images | 176, 226 |
| abstract_inverted_index.losses | 111 |
| abstract_inverted_index.merely | 15, 242 |
| abstract_inverted_index.mobile | 153, 292 |
| abstract_inverted_index.models | 133, 143, 169 |
| abstract_inverted_index.number | 163 |
| abstract_inverted_index.phones | 154 |
| abstract_inverted_index.reduce | 316 |
| abstract_inverted_index.spread | 312 |
| abstract_inverted_index.timely | 307 |
| abstract_inverted_index.tomato | 106, 126, 224, 302 |
| abstract_inverted_index.vision | 213, 257, 261 |
| abstract_inverted_index.visual | 254 |
| abstract_inverted_index.51.12%, | 271 |
| abstract_inverted_index.74.12%, | 272 |
| abstract_inverted_index.98.33%, | 248 |
| abstract_inverted_index.98.93%, | 247 |
| abstract_inverted_index.Things) | 287 |
| abstract_inverted_index.address | 203 |
| abstract_inverted_index.affects | 113 |
| abstract_inverted_index.between | 185 |
| abstract_inverted_index.cancer, | 50 |
| abstract_inverted_index.complex | 232 |
| abstract_inverted_index.degrade | 101 |
| abstract_inverted_index.devices | 150, 293 |
| abstract_inverted_index.disease | 119 |
| abstract_inverted_index.drones, | 290 |
| abstract_inverted_index.farmers | 296 |
| abstract_inverted_index.glucose | 56 |
| abstract_inverted_index.leaf.To | 202 |
| abstract_inverted_index.million | 4 |
| abstract_inverted_index.models, | 263 |
| abstract_inverted_index.prevent | 310 |
| abstract_inverted_index.quality | 103 |
| abstract_inverted_index.storage | 240 |
| abstract_inverted_index.accuracy | 219 |
| abstract_inverted_index.achieves | 217 |
| abstract_inverted_index.critical | 130 |
| abstract_inverted_index.deployed | 283 |
| abstract_inverted_index.devices, | 289 |
| abstract_inverted_index.diseases | 198, 314 |
| abstract_inverted_index.existing | 192 |
| abstract_inverted_index.geometry | 255 |
| abstract_inverted_index.globally | 60 |
| abstract_inverted_index.handheld | 149 |
| abstract_inverted_index.increase | 21 |
| abstract_inverted_index.learning | 132 |
| abstract_inverted_index.minimize | 87 |
| abstract_inverted_index.multiple | 197 |
| abstract_inverted_index.periodic | 304 |
| abstract_inverted_index.pressure | 54 |
| abstract_inverted_index.promotes | 306 |
| abstract_inverted_index.proposed | 170 |
| abstract_inverted_index.reported | 10 |
| abstract_inverted_index.requires | 237 |
| abstract_inverted_index.results, | 140 |
| abstract_inverted_index.tomatoes | 8, 58 |
| abstract_inverted_index.training | 265 |
| abstract_inverted_index.value.To | 69 |
| abstract_inverted_index.vitamins | 40 |
| abstract_inverted_index.(Internet | 285 |
| abstract_inverted_index.adversely | 96 |
| abstract_inverted_index.automatic | 118 |
| abstract_inverted_index.concerns, | 205 |
| abstract_inverted_index.crops.The | 303 |
| abstract_inverted_index.detection | 120 |
| abstract_inverted_index.difficult | 145 |
| abstract_inverted_index.financial | 110 |
| abstract_inverted_index.implement | 147 |
| abstract_inverted_index.important | 47, 61 |
| abstract_inverted_index.introduce | 207 |
| abstract_inverted_index.lycopene, | 39 |
| abstract_inverted_index.mandatory | 78 |
| abstract_inverted_index.model.The | 215 |
| abstract_inverted_index.predicted | 27 |
| abstract_inverted_index.processed | 7 |
| abstract_inverted_index.promising | 139 |
| abstract_inverted_index.real-time | 299 |
| abstract_inverted_index.tomatoes, | 75 |
| abstract_inverted_index.background | 187 |
| abstract_inverted_index.customized | 209 |
| abstract_inverted_index.fruit.This | 107 |
| abstract_inverted_index.introduced | 134 |
| abstract_inverted_index.issue.Deep | 131 |
| abstract_inverted_index.literature | 137 |
| abstract_inverted_index.livelihood | 115 |
| abstract_inverted_index.monitoring | 300, 305 |
| abstract_inverted_index.potassium, | 37 |
| abstract_inverted_index.preventing | 49 |
| abstract_inverted_index.techniques | 193 |
| abstract_inverted_index.widespread | 65 |
| abstract_inverted_index.IoT-enabled | 288 |
| abstract_inverted_index.antioxidant | 38 |
| abstract_inverted_index.backgrounds | 179, 233 |
| abstract_inverted_index.classifying | 223 |
| abstract_inverted_index.consumption | 1, 25 |
| abstract_inverted_index.convolution | 212, 260 |
| abstract_inverted_index.demarcation | 183 |
| abstract_inverted_index.efficiently | 174 |
| abstract_inverted_index.investigate | 80 |
| abstract_inverted_index.maintaining | 52 |
| abstract_inverted_index.nutritional | 68 |
| abstract_inverted_index.recognizing | 196 |
| abstract_inverted_index.transformer | 214, 262 |
| abstract_inverted_index.levels.Thus, | 57 |
| abstract_inverted_index.models.Thus, | 279 |
| abstract_inverted_index.2032.Tomatoes | 31 |
| abstract_inverted_index.categories.It | 236 |
| abstract_inverted_index.computational | 158 |
| abstract_inverted_index.them.Diseases | 88 |
| abstract_inverted_index.transformers, | 258 |
| abstract_inverted_index.consumption.An | 20 |
| abstract_inverted_index.learning-based | 211 |
| abstract_inverted_index.above-mentioned | 278 |
| abstract_inverted_index.stateof-the-art | 253 |
| abstract_inverted_index.parameters.Also, | 165 |
| abstract_inverted_index.region.Moreover, | 190 |
| abstract_inverted_index.respectively.Its | 264 |
| abstract_inverted_index.farmers.Therefore, | 117 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.99299377 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |