Time delay multi-feature correlation analysis to extract subtle dependencies from EEG signals Article Swipe
Electroencephalography (EEG) signals are resultants of extremely complex brain activity. Some details of this hidden dynamics might be accessible through e.g. joint distributions $ρ_{Δt}$ of signals of pairs of electrodes shifted by various time delays (lag $Δt$). A standard approach is monitoring a single evaluation of such joint distributions, like Pearson correlation (or mutual information), which turns out relatively uninteresting - as expected, there is usually a small peak for zero delay and nearly symmetric drop with delay. In contrast, such a complex signal might be composed of multiple types of statistical dependencies - this article proposes approach to automatically decompose and extract them. Specifically, we model such joint distributions as polynomials, estimated separately for all considered lag dependencies, then with PCA dimensionality reduction we find the dominant joint density distortion directions $f_v$. This way we get a few lag dependent features $a_i(Δt)$ describing separate dominating statistical dependencies of known contributions: $ρ_{Δt}(y,z)\approx \sum_{i=1}^r a_i(Δt)\, f_{v_i}(y,z)$. Such features complement Pearson correlation, extracting hidden more complex behavior, e.g. with asymmetry which might be related with direction of information transfer, extrema suggesting characteristic delays, or oscillatory behavior suggesting some periodicity. There is also discussed extension of Granger causality to such multi-feature joint density analysis, suggesting e.g. two separate causality waves. While this early article is initial fundamental research, in future it might help e.g. with understanding of cortex hidden dynamics, diagnosis of pathologies like epilepsy, determination of precise electrode position, or building brain-computer interface.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.09478
- https://arxiv.org/pdf/2305.09478
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4377009907
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4377009907Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.09478Digital Object Identifier
- Title
-
Time delay multi-feature correlation analysis to extract subtle dependencies from EEG signalsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-24Full publication date if available
- Authors
-
Jarek DudaList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.09478Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.09478Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.09478Direct OA link when available
- Concepts
-
Mutual information, Joint probability distribution, Electroencephalography, Pattern recognition (psychology), Correlation, Feature (linguistics), Asymmetry, Mathematics, Lag, Curse of dimensionality, Computer science, Artificial intelligence, Statistical physics, Physics, Statistics, Psychology, Linguistics, Philosophy, Psychiatry, Geometry, Computer network, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4377009907 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.09478 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.09478 |
| ids.openalex | https://openalex.org/W4377009907 |
| fwci | |
| type | preprint |
| title | Time delay multi-feature correlation analysis to extract subtle dependencies from EEG signals |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9822999835014343 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9768000245094299 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9763000011444092 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C152139883 |
| concepts[0].level | 2 |
| concepts[0].score | 0.538116991519928 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q252973 |
| concepts[0].display_name | Mutual information |
| concepts[1].id | https://openalex.org/C18653775 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5296392440795898 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1333358 |
| concepts[1].display_name | Joint probability distribution |
| concepts[2].id | https://openalex.org/C522805319 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5251712203025818 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[2].display_name | Electroencephalography |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4956451654434204 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C117220453 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48083505034446716 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[4].display_name | Correlation |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4597899913787842 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C38976095 |
| concepts[6].level | 2 |
| concepts[6].score | 0.45662108063697815 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q752641 |
| concepts[6].display_name | Asymmetry |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.45642703771591187 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C75778745 |
| concepts[8].level | 2 |
| concepts[8].score | 0.43741369247436523 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q342626 |
| concepts[8].display_name | Lag |
| concepts[9].id | https://openalex.org/C111030470 |
| concepts[9].level | 2 |
| concepts[9].score | 0.421790212392807 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[9].display_name | Curse of dimensionality |
| concepts[10].id | https://openalex.org/C41008148 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3790147006511688 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[10].display_name | Computer science |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37833237648010254 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C121864883 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3213300406932831 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[12].display_name | Statistical physics |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2877519726753235 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.22243660688400269 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C15744967 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1328418254852295 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[15].display_name | Psychology |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| concepts[18].id | https://openalex.org/C118552586 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[18].display_name | Psychiatry |
| concepts[19].id | https://openalex.org/C2524010 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[19].display_name | Geometry |
| concepts[20].id | https://openalex.org/C31258907 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[20].display_name | Computer network |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/mutual-information |
| keywords[0].score | 0.538116991519928 |
| keywords[0].display_name | Mutual information |
| keywords[1].id | https://openalex.org/keywords/joint-probability-distribution |
| keywords[1].score | 0.5296392440795898 |
| keywords[1].display_name | Joint probability distribution |
| keywords[2].id | https://openalex.org/keywords/electroencephalography |
| keywords[2].score | 0.5251712203025818 |
| keywords[2].display_name | Electroencephalography |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.4956451654434204 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/correlation |
| keywords[4].score | 0.48083505034446716 |
| keywords[4].display_name | Correlation |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.4597899913787842 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/asymmetry |
| keywords[6].score | 0.45662108063697815 |
| keywords[6].display_name | Asymmetry |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.45642703771591187 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/lag |
| keywords[8].score | 0.43741369247436523 |
| keywords[8].display_name | Lag |
| keywords[9].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[9].score | 0.421790212392807 |
| keywords[9].display_name | Curse of dimensionality |
| keywords[10].id | https://openalex.org/keywords/computer-science |
| keywords[10].score | 0.3790147006511688 |
| keywords[10].display_name | Computer science |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.37833237648010254 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistical-physics |
| keywords[12].score | 0.3213300406932831 |
| keywords[12].display_name | Statistical physics |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.2877519726753235 |
| keywords[13].display_name | Physics |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.22243660688400269 |
| keywords[14].display_name | Statistics |
| keywords[15].id | https://openalex.org/keywords/psychology |
| keywords[15].score | 0.1328418254852295 |
| keywords[15].display_name | Psychology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.09478 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.09478 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.09478 |
| locations[1].id | doi:10.48550/arxiv.2305.09478 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.09478 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5109420627 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jarek Duda |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Duda, Jarek |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.09478 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Time delay multi-feature correlation analysis to extract subtle dependencies from EEG signals |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9822999835014343 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W1980563100, https://openalex.org/W1644661642, https://openalex.org/W2466816617, https://openalex.org/W4297670902, https://openalex.org/W4296209631, https://openalex.org/W2167436245, https://openalex.org/W2035154026, https://openalex.org/W2065779551, https://openalex.org/W2050217822, https://openalex.org/W1652513307 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.09478 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.09478 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.09478 |
| primary_location.id | pmh:oai:arXiv.org:2305.09478 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.09478 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.09478 |
| publication_date | 2023-04-24 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 60, 93 |
| abstract_inverted_index.A | 37 |
| abstract_inverted_index.a | 42, 66, 81, 137 |
| abstract_inverted_index.In | 78 |
| abstract_inverted_index.as | 61, 110 |
| abstract_inverted_index.be | 17, 85, 170 |
| abstract_inverted_index.by | 31 |
| abstract_inverted_index.in | 215 |
| abstract_inverted_index.is | 40, 64, 188, 211 |
| abstract_inverted_index.it | 217 |
| abstract_inverted_index.of | 5, 12, 24, 26, 28, 45, 87, 90, 148, 174, 192, 223, 228, 233 |
| abstract_inverted_index.or | 181, 237 |
| abstract_inverted_index.to | 98, 195 |
| abstract_inverted_index.we | 105, 124, 135 |
| abstract_inverted_index.(or | 52 |
| abstract_inverted_index.PCA | 121 |
| abstract_inverted_index.all | 115 |
| abstract_inverted_index.and | 72, 101 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.few | 138 |
| abstract_inverted_index.for | 69, 114 |
| abstract_inverted_index.get | 136 |
| abstract_inverted_index.lag | 117, 139 |
| abstract_inverted_index.out | 57 |
| abstract_inverted_index.the | 126 |
| abstract_inverted_index.two | 203 |
| abstract_inverted_index.way | 134 |
| abstract_inverted_index.(lag | 35 |
| abstract_inverted_index.Some | 10 |
| abstract_inverted_index.Such | 155 |
| abstract_inverted_index.This | 133 |
| abstract_inverted_index.also | 189 |
| abstract_inverted_index.drop | 75 |
| abstract_inverted_index.e.g. | 20, 165, 202, 220 |
| abstract_inverted_index.find | 125 |
| abstract_inverted_index.help | 219 |
| abstract_inverted_index.like | 49, 230 |
| abstract_inverted_index.more | 162 |
| abstract_inverted_index.peak | 68 |
| abstract_inverted_index.some | 185 |
| abstract_inverted_index.such | 46, 80, 107, 196 |
| abstract_inverted_index.then | 119 |
| abstract_inverted_index.this | 13, 94, 208 |
| abstract_inverted_index.time | 33 |
| abstract_inverted_index.with | 76, 120, 166, 172, 221 |
| abstract_inverted_index.zero | 70 |
| abstract_inverted_index.(EEG) | 1 |
| abstract_inverted_index.There | 187 |
| abstract_inverted_index.While | 207 |
| abstract_inverted_index.brain | 8 |
| abstract_inverted_index.delay | 71 |
| abstract_inverted_index.early | 209 |
| abstract_inverted_index.joint | 21, 47, 108, 128, 198 |
| abstract_inverted_index.known | 149 |
| abstract_inverted_index.might | 16, 84, 169, 218 |
| abstract_inverted_index.model | 106 |
| abstract_inverted_index.pairs | 27 |
| abstract_inverted_index.small | 67 |
| abstract_inverted_index.them. | 103 |
| abstract_inverted_index.there | 63 |
| abstract_inverted_index.turns | 56 |
| abstract_inverted_index.types | 89 |
| abstract_inverted_index.which | 55, 168 |
| abstract_inverted_index.$f_v$. | 132 |
| abstract_inverted_index.cortex | 224 |
| abstract_inverted_index.delay. | 77 |
| abstract_inverted_index.delays | 34 |
| abstract_inverted_index.future | 216 |
| abstract_inverted_index.hidden | 14, 161, 225 |
| abstract_inverted_index.mutual | 53 |
| abstract_inverted_index.nearly | 73 |
| abstract_inverted_index.signal | 83 |
| abstract_inverted_index.single | 43 |
| abstract_inverted_index.waves. | 206 |
| abstract_inverted_index.$Δt$). | 36 |
| abstract_inverted_index.Granger | 193 |
| abstract_inverted_index.Pearson | 50, 158 |
| abstract_inverted_index.article | 95, 210 |
| abstract_inverted_index.complex | 7, 82, 163 |
| abstract_inverted_index.delays, | 180 |
| abstract_inverted_index.density | 129, 199 |
| abstract_inverted_index.details | 11 |
| abstract_inverted_index.extract | 102 |
| abstract_inverted_index.extrema | 177 |
| abstract_inverted_index.initial | 212 |
| abstract_inverted_index.precise | 234 |
| abstract_inverted_index.related | 171 |
| abstract_inverted_index.shifted | 30 |
| abstract_inverted_index.signals | 2, 25 |
| abstract_inverted_index.through | 19 |
| abstract_inverted_index.usually | 65 |
| abstract_inverted_index.various | 32 |
| abstract_inverted_index.approach | 39, 97 |
| abstract_inverted_index.behavior | 183 |
| abstract_inverted_index.building | 238 |
| abstract_inverted_index.composed | 86 |
| abstract_inverted_index.dominant | 127 |
| abstract_inverted_index.dynamics | 15 |
| abstract_inverted_index.features | 141, 156 |
| abstract_inverted_index.multiple | 88 |
| abstract_inverted_index.proposes | 96 |
| abstract_inverted_index.separate | 144, 204 |
| abstract_inverted_index.standard | 38 |
| abstract_inverted_index.activity. | 9 |
| abstract_inverted_index.analysis, | 200 |
| abstract_inverted_index.asymmetry | 167 |
| abstract_inverted_index.behavior, | 164 |
| abstract_inverted_index.causality | 194, 205 |
| abstract_inverted_index.contrast, | 79 |
| abstract_inverted_index.decompose | 100 |
| abstract_inverted_index.dependent | 140 |
| abstract_inverted_index.diagnosis | 227 |
| abstract_inverted_index.direction | 173 |
| abstract_inverted_index.discussed | 190 |
| abstract_inverted_index.dynamics, | 226 |
| abstract_inverted_index.electrode | 235 |
| abstract_inverted_index.epilepsy, | 231 |
| abstract_inverted_index.estimated | 112 |
| abstract_inverted_index.expected, | 62 |
| abstract_inverted_index.extension | 191 |
| abstract_inverted_index.extremely | 6 |
| abstract_inverted_index.position, | 236 |
| abstract_inverted_index.reduction | 123 |
| abstract_inverted_index.research, | 214 |
| abstract_inverted_index.symmetric | 74 |
| abstract_inverted_index.transfer, | 176 |
| abstract_inverted_index.$a_i(Δt)$ | 142 |
| abstract_inverted_index.$ρ_{Δt}$ | 23 |
| abstract_inverted_index.a_i(Δt)\, | 153 |
| abstract_inverted_index.accessible | 18 |
| abstract_inverted_index.complement | 157 |
| abstract_inverted_index.considered | 116 |
| abstract_inverted_index.describing | 143 |
| abstract_inverted_index.directions | 131 |
| abstract_inverted_index.distortion | 130 |
| abstract_inverted_index.dominating | 145 |
| abstract_inverted_index.electrodes | 29 |
| abstract_inverted_index.evaluation | 44 |
| abstract_inverted_index.extracting | 160 |
| abstract_inverted_index.interface. | 240 |
| abstract_inverted_index.monitoring | 41 |
| abstract_inverted_index.relatively | 58 |
| abstract_inverted_index.resultants | 4 |
| abstract_inverted_index.separately | 113 |
| abstract_inverted_index.suggesting | 178, 184, 201 |
| abstract_inverted_index.correlation | 51 |
| abstract_inverted_index.fundamental | 213 |
| abstract_inverted_index.information | 175 |
| abstract_inverted_index.oscillatory | 182 |
| abstract_inverted_index.pathologies | 229 |
| abstract_inverted_index.statistical | 91, 146 |
| abstract_inverted_index.\sum_{i=1}^r | 152 |
| abstract_inverted_index.correlation, | 159 |
| abstract_inverted_index.dependencies | 92, 147 |
| abstract_inverted_index.periodicity. | 186 |
| abstract_inverted_index.polynomials, | 111 |
| abstract_inverted_index.Specifically, | 104 |
| abstract_inverted_index.automatically | 99 |
| abstract_inverted_index.dependencies, | 118 |
| abstract_inverted_index.determination | 232 |
| abstract_inverted_index.distributions | 22, 109 |
| abstract_inverted_index.information), | 54 |
| abstract_inverted_index.multi-feature | 197 |
| abstract_inverted_index.understanding | 222 |
| abstract_inverted_index.uninteresting | 59 |
| abstract_inverted_index.brain-computer | 239 |
| abstract_inverted_index.characteristic | 179 |
| abstract_inverted_index.contributions: | 150 |
| abstract_inverted_index.dimensionality | 122 |
| abstract_inverted_index.distributions, | 48 |
| abstract_inverted_index.f_{v_i}(y,z)$. | 154 |
| abstract_inverted_index.$ρ_{Δt}(y,z)\approx | 151 |
| abstract_inverted_index.Electroencephalography | 0 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5109420627 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |