Time Difference of Arrival (TDoA) Localization Combining Weighted Least Squares and Firefly Algorithm Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.3390/s19112554
Time difference of arrival (TDoA) based on a group of sensor nodes with known locations has been widely used to locate targets. Two-step weighted least squares (TSWLS), constrained weighted least squares (CWLS), and Newton–Raphson (NR) iteration are commonly used passive location methods, among which the initial position is needed and the complexity is high. This paper proposes a hybrid firefly algorithm (hybrid-FA) method, combining the weighted least squares (WLS) algorithm and FA, which can reduce computation as well as achieve high accuracy. The WLS algorithm is performed first, the result of which is used to restrict the search region for the FA method. Simulations showed that the hybrid-FA method required far fewer iterations than the FA method alone to achieve the same accuracy. Additionally, two experiments were conducted to compare the results of hybrid-FA with other methods. The findings indicated that the root-mean-square error (RMSE) and mean distance error of the hybrid-FA method were lower than that of the NR, TSWLS, and genetic algorithm (GA). On the whole, the hybrid-FA outperformed the NR, TSWLS, and GA for TDoA measurement.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s19112554
- https://www.mdpi.com/1424-8220/19/11/2554/pdf?version=1559888300
- OA Status
- gold
- Cited By
- 122
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2948293246
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2948293246Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s19112554Digital Object Identifier
- Title
-
Time Difference of Arrival (TDoA) Localization Combining Weighted Least Squares and Firefly AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-06-04Full publication date if available
- Authors
-
Peng Wu, Shaojing Su, Zhen Zuo, Xiaojun Guo, Bei Sun, Xudong WenList of authors in order
- Landing page
-
https://doi.org/10.3390/s19112554Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/19/11/2554/pdf?version=1559888300Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/19/11/2554/pdf?version=1559888300Direct OA link when available
- Concepts
-
Multilateration, Algorithm, Firefly algorithm, Mean squared error, Least-squares function approximation, Genetic algorithm, Mathematics, Computer science, Mathematical optimization, Statistics, Azimuth, Particle swarm optimization, Estimator, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
122Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 20, 2024: 28, 2023: 21, 2022: 19, 2021: 18Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2948293246 |
|---|---|
| doi | https://doi.org/10.3390/s19112554 |
| ids.doi | https://doi.org/10.3390/s19112554 |
| ids.mag | 2948293246 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31167498 |
| ids.openalex | https://openalex.org/W2948293246 |
| fwci | 6.03417574 |
| type | article |
| title | Time Difference of Arrival (TDoA) Localization Combining Weighted Least Squares and Firefly Algorithm |
| awards[0].id | https://openalex.org/G5525546932 |
| awards[0].funder_id | https://openalex.org/F4320322843 |
| awards[0].display_name | |
| awards[0].funder_award_id | No.2018JJ3607 |
| awards[0].funder_display_name | Natural Science Foundation of Hunan Province |
| awards[1].id | https://openalex.org/G3007160969 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | No.51575517 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 11 |
| biblio.volume | 19 |
| biblio.last_page | 2554 |
| biblio.first_page | 2554 |
| topics[0].id | https://openalex.org/T10326 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Indoor and Outdoor Localization Technologies |
| topics[1].id | https://openalex.org/T10711 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9916999936103821 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322843 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Hunan Province |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C104037064 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9813874959945679 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1640884 |
| concepts[0].display_name | Multilateration |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6770145893096924 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C154982244 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6687761545181274 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5451844 |
| concepts[2].display_name | Firefly algorithm |
| concepts[3].id | https://openalex.org/C139945424 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6315694451332092 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[3].display_name | Mean squared error |
| concepts[4].id | https://openalex.org/C9936470 |
| concepts[4].level | 3 |
| concepts[4].score | 0.560126006603241 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6510405 |
| concepts[4].display_name | Least-squares function approximation |
| concepts[5].id | https://openalex.org/C8880873 |
| concepts[5].level | 2 |
| concepts[5].score | 0.44787389039993286 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q187787 |
| concepts[5].display_name | Genetic algorithm |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4426139295101166 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4154580533504486 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C126255220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3201448917388916 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[8].display_name | Mathematical optimization |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.21076011657714844 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C159737794 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q124274 |
| concepts[10].display_name | Azimuth |
| concepts[11].id | https://openalex.org/C85617194 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[11].display_name | Particle swarm optimization |
| concepts[12].id | https://openalex.org/C185429906 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[12].display_name | Estimator |
| concepts[13].id | https://openalex.org/C2524010 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[13].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/multilateration |
| keywords[0].score | 0.9813874959945679 |
| keywords[0].display_name | Multilateration |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.6770145893096924 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/firefly-algorithm |
| keywords[2].score | 0.6687761545181274 |
| keywords[2].display_name | Firefly algorithm |
| keywords[3].id | https://openalex.org/keywords/mean-squared-error |
| keywords[3].score | 0.6315694451332092 |
| keywords[3].display_name | Mean squared error |
| keywords[4].id | https://openalex.org/keywords/least-squares-function-approximation |
| keywords[4].score | 0.560126006603241 |
| keywords[4].display_name | Least-squares function approximation |
| keywords[5].id | https://openalex.org/keywords/genetic-algorithm |
| keywords[5].score | 0.44787389039993286 |
| keywords[5].display_name | Genetic algorithm |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.4426139295101166 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4154580533504486 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[8].score | 0.3201448917388916 |
| keywords[8].display_name | Mathematical optimization |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.21076011657714844 |
| keywords[9].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.3390/s19112554 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/19/11/2554/pdf?version=1559888300 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s19112554 |
| locations[1].id | pmid:31167498 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31167498 |
| locations[2].id | pmh:oai:doaj.org/article:b8b4f99148cc4379b2eefeba72c32ffa |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 19, Iss 11, p 2554 (2019) |
| locations[2].landing_page_url | https://doaj.org/article/b8b4f99148cc4379b2eefeba72c32ffa |
| locations[3].id | pmh:oai:europepmc.org:5594696 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6603714 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/19/11/2554/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors |
| locations[4].landing_page_url | http://dx.doi.org/10.3390/s19112554 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5083862838 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0533-8022 |
| authorships[0].author.display_name | Peng Wu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[0].institutions[0].id | https://openalex.org/I170215575 |
| authorships[0].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | National University of Defense Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Peng Wu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[1].author.id | https://openalex.org/A5007739240 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8016-5101 |
| authorships[1].author.display_name | Shaojing Su |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[1].institutions[0].id | https://openalex.org/I170215575 |
| authorships[1].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | National University of Defense Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shaojing Su |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[2].author.id | https://openalex.org/A5041361500 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3250-8568 |
| authorships[2].author.display_name | Zhen Zuo |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[2].institutions[0].id | https://openalex.org/I170215575 |
| authorships[2].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | National University of Defense Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhen Zuo |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[3].author.id | https://openalex.org/A5039235939 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6694-3827 |
| authorships[3].author.display_name | Xiaojun Guo |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[3].institutions[0].id | https://openalex.org/I170215575 |
| authorships[3].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | National University of Defense Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaojun Guo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[4].author.id | https://openalex.org/A5038338600 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3503-801X |
| authorships[4].author.display_name | Bei Sun |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[4].institutions[0].id | https://openalex.org/I170215575 |
| authorships[4].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | National University of Defense Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bei Sun |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[5].author.id | https://openalex.org/A5047154278 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Xudong Wen |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I170215575 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| authorships[5].institutions[0].id | https://openalex.org/I170215575 |
| authorships[5].institutions[0].ror | https://ror.org/05d2yfz11 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I170215575 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | National University of Defense Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xudong Wen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/19/11/2554/pdf?version=1559888300 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Time Difference of Arrival (TDoA) Localization Combining Weighted Least Squares and Firefly Algorithm |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10326 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Indoor and Outdoor Localization Technologies |
| related_works | https://openalex.org/W2380293945, https://openalex.org/W1974812937, https://openalex.org/W1500522817, https://openalex.org/W3095239554, https://openalex.org/W1972023576, https://openalex.org/W3212409750, https://openalex.org/W4387088887, https://openalex.org/W2072053180, https://openalex.org/W1541088746, https://openalex.org/W2109079177 |
| cited_by_count | 122 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 20 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 28 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 21 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 19 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 18 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 13 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s19112554 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/19/11/2554/pdf?version=1559888300 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s19112554 |
| primary_location.id | doi:10.3390/s19112554 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/19/11/2554/pdf?version=1559888300 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s19112554 |
| publication_date | 2019-06-04 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2376007331, https://openalex.org/W2161459013, https://openalex.org/W2146053319, https://openalex.org/W2366087186, https://openalex.org/W2044541911, https://openalex.org/W2067817917, https://openalex.org/W2010080563, https://openalex.org/W6650986666, https://openalex.org/W2157390512, https://openalex.org/W2110526347, https://openalex.org/W2614148698, https://openalex.org/W2157738322, https://openalex.org/W2156476853, https://openalex.org/W2154347068, https://openalex.org/W2121318194, https://openalex.org/W2101317465, https://openalex.org/W2120350100, https://openalex.org/W2089181681, https://openalex.org/W198709287, https://openalex.org/W2072323247, https://openalex.org/W2142947066, https://openalex.org/W2802716869, https://openalex.org/W2794369236, https://openalex.org/W2899892357, https://openalex.org/W2901335580, https://openalex.org/W1969691294, https://openalex.org/W1523741643, https://openalex.org/W2525762567, https://openalex.org/W2091582232, https://openalex.org/W1939116153, https://openalex.org/W2002022952 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 7, 57 |
| abstract_inverted_index.FA | 101, 115 |
| abstract_inverted_index.GA | 175 |
| abstract_inverted_index.On | 165 |
| abstract_inverted_index.as | 76, 78 |
| abstract_inverted_index.is | 47, 52, 85, 92 |
| abstract_inverted_index.of | 2, 9, 90, 132, 149, 157 |
| abstract_inverted_index.on | 6 |
| abstract_inverted_index.to | 19, 94, 118, 128 |
| abstract_inverted_index.FA, | 71 |
| abstract_inverted_index.NR, | 159, 172 |
| abstract_inverted_index.The | 82, 137 |
| abstract_inverted_index.WLS | 83 |
| abstract_inverted_index.and | 32, 49, 70, 145, 161, 174 |
| abstract_inverted_index.are | 36 |
| abstract_inverted_index.can | 73 |
| abstract_inverted_index.far | 110 |
| abstract_inverted_index.for | 99, 176 |
| abstract_inverted_index.has | 15 |
| abstract_inverted_index.the | 44, 50, 64, 88, 96, 100, 106, 114, 120, 130, 141, 150, 158, 166, 168, 171 |
| abstract_inverted_index.two | 124 |
| abstract_inverted_index.(NR) | 34 |
| abstract_inverted_index.TDoA | 177 |
| abstract_inverted_index.This | 54 |
| abstract_inverted_index.Time | 0 |
| abstract_inverted_index.been | 16 |
| abstract_inverted_index.high | 80 |
| abstract_inverted_index.mean | 146 |
| abstract_inverted_index.same | 121 |
| abstract_inverted_index.than | 113, 155 |
| abstract_inverted_index.that | 105, 140, 156 |
| abstract_inverted_index.used | 18, 38, 93 |
| abstract_inverted_index.well | 77 |
| abstract_inverted_index.were | 126, 153 |
| abstract_inverted_index.with | 12, 134 |
| abstract_inverted_index.(GA). | 164 |
| abstract_inverted_index.(WLS) | 68 |
| abstract_inverted_index.alone | 117 |
| abstract_inverted_index.among | 42 |
| abstract_inverted_index.based | 5 |
| abstract_inverted_index.error | 143, 148 |
| abstract_inverted_index.fewer | 111 |
| abstract_inverted_index.group | 8 |
| abstract_inverted_index.high. | 53 |
| abstract_inverted_index.known | 13 |
| abstract_inverted_index.least | 24, 29, 66 |
| abstract_inverted_index.lower | 154 |
| abstract_inverted_index.nodes | 11 |
| abstract_inverted_index.other | 135 |
| abstract_inverted_index.paper | 55 |
| abstract_inverted_index.which | 43, 72, 91 |
| abstract_inverted_index.(RMSE) | 144 |
| abstract_inverted_index.(TDoA) | 4 |
| abstract_inverted_index.TSWLS, | 160, 173 |
| abstract_inverted_index.first, | 87 |
| abstract_inverted_index.hybrid | 58 |
| abstract_inverted_index.locate | 20 |
| abstract_inverted_index.method | 108, 116, 152 |
| abstract_inverted_index.needed | 48 |
| abstract_inverted_index.reduce | 74 |
| abstract_inverted_index.region | 98 |
| abstract_inverted_index.result | 89 |
| abstract_inverted_index.search | 97 |
| abstract_inverted_index.sensor | 10 |
| abstract_inverted_index.showed | 104 |
| abstract_inverted_index.whole, | 167 |
| abstract_inverted_index.widely | 17 |
| abstract_inverted_index.(CWLS), | 31 |
| abstract_inverted_index.achieve | 79, 119 |
| abstract_inverted_index.arrival | 3 |
| abstract_inverted_index.compare | 129 |
| abstract_inverted_index.firefly | 59 |
| abstract_inverted_index.genetic | 162 |
| abstract_inverted_index.initial | 45 |
| abstract_inverted_index.method, | 62 |
| abstract_inverted_index.method. | 102 |
| abstract_inverted_index.passive | 39 |
| abstract_inverted_index.results | 131 |
| abstract_inverted_index.squares | 25, 30, 67 |
| abstract_inverted_index.(TSWLS), | 26 |
| abstract_inverted_index.Two-step | 22 |
| abstract_inverted_index.commonly | 37 |
| abstract_inverted_index.distance | 147 |
| abstract_inverted_index.findings | 138 |
| abstract_inverted_index.location | 40 |
| abstract_inverted_index.methods, | 41 |
| abstract_inverted_index.methods. | 136 |
| abstract_inverted_index.position | 46 |
| abstract_inverted_index.proposes | 56 |
| abstract_inverted_index.required | 109 |
| abstract_inverted_index.restrict | 95 |
| abstract_inverted_index.targets. | 21 |
| abstract_inverted_index.weighted | 23, 28, 65 |
| abstract_inverted_index.accuracy. | 81, 122 |
| abstract_inverted_index.algorithm | 60, 69, 84, 163 |
| abstract_inverted_index.combining | 63 |
| abstract_inverted_index.conducted | 127 |
| abstract_inverted_index.hybrid-FA | 107, 133, 151, 169 |
| abstract_inverted_index.indicated | 139 |
| abstract_inverted_index.iteration | 35 |
| abstract_inverted_index.locations | 14 |
| abstract_inverted_index.performed | 86 |
| abstract_inverted_index.complexity | 51 |
| abstract_inverted_index.difference | 1 |
| abstract_inverted_index.iterations | 112 |
| abstract_inverted_index.(hybrid-FA) | 61 |
| abstract_inverted_index.Simulations | 103 |
| abstract_inverted_index.computation | 75 |
| abstract_inverted_index.constrained | 27 |
| abstract_inverted_index.experiments | 125 |
| abstract_inverted_index.measurement. | 178 |
| abstract_inverted_index.outperformed | 170 |
| abstract_inverted_index.Additionally, | 123 |
| abstract_inverted_index.Newton–Raphson | 33 |
| abstract_inverted_index.root-mean-square | 142 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5041361500 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I170215575 |
| citation_normalized_percentile.value | 0.97207035 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |