Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2408.07847
Charged particle dynamics under the influence of electromagnetic fields is a challenging spatiotemporal problem. Many high performance physics-based simulators for predicting behavior in a charged particle beam are computationally expensive, limiting their utility for solving inverse problems online. The problem of estimating upstream six-dimensional phase space given downstream measurements of charged particles in an accelerator is an inverse problem of growing importance. This paper introduces a reverse Latent Evolution Model (rLEM) designed for temporal inversion of forward beam dynamics. In this two-step self-supervised deep learning framework, we utilize a Conditional Variational Autoencoder (CVAE) to project 6D phase space projections of a charged particle beam into a lower-dimensional latent distribution. Subsequently, we autoregressively learn the inverse temporal dynamics in the latent space using a Long Short-Term Memory (LSTM) network. The coupled CVAE-LSTM framework can predict 6D phase space projections across all upstream accelerating sections based on single or multiple downstream phase space measurements as inputs. The proposed model also captures the aleatoric uncertainty of the high-dimensional input data within the latent space. This uncertainty, which reflects potential uncertain measurements at a given module, is propagated through the LSTM to estimate uncertainty bounds for all upstream predictions, demonstrating the robustness of the LSTM against in-distribution variations in the input data.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2408.07847
- https://arxiv.org/pdf/2408.07847
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406022751
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406022751Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2408.07847Digital Object Identifier
- Title
-
Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversalWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-14Full publication date if available
- Authors
-
Mahindra Rautela, Alan Williams, Alexander ScheinkerList of authors in order
- Landing page
-
https://arxiv.org/abs/2408.07847Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2408.07847Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2408.07847Direct OA link when available
- Concepts
-
Inversion (geology), Dynamics (music), Statistical physics, Computer science, Beam (structure), Physics, Geology, Optics, Seismology, Acoustics, TectonicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406022751 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2408.07847 |
| ids.doi | https://doi.org/10.48550/arxiv.2408.07847 |
| ids.openalex | https://openalex.org/W4406022751 |
| fwci | 0.0 |
| type | preprint |
| title | Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10860 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9718000292778015 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Speech and Audio Processing |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9444000124931335 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T11698 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9442999958992004 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1910 |
| topics[2].subfield.display_name | Oceanography |
| topics[2].display_name | Underwater Acoustics Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C1893757 |
| concepts[0].level | 3 |
| concepts[0].score | 0.701677680015564 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3653001 |
| concepts[0].display_name | Inversion (geology) |
| concepts[1].id | https://openalex.org/C145912823 |
| concepts[1].level | 2 |
| concepts[1].score | 0.4642084240913391 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q113558 |
| concepts[1].display_name | Dynamics (music) |
| concepts[2].id | https://openalex.org/C121864883 |
| concepts[2].level | 1 |
| concepts[2].score | 0.45944109559059143 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[2].display_name | Statistical physics |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.42525044083595276 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C168834538 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4197782576084137 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3705329 |
| concepts[4].display_name | Beam (structure) |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3010093867778778 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17811140418052673 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C120665830 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1634821891784668 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[7].display_name | Optics |
| concepts[8].id | https://openalex.org/C165205528 |
| concepts[8].level | 1 |
| concepts[8].score | 0.07348698377609253 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[8].display_name | Seismology |
| concepts[9].id | https://openalex.org/C24890656 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[9].display_name | Acoustics |
| concepts[10].id | https://openalex.org/C77928131 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q193343 |
| concepts[10].display_name | Tectonics |
| keywords[0].id | https://openalex.org/keywords/inversion |
| keywords[0].score | 0.701677680015564 |
| keywords[0].display_name | Inversion (geology) |
| keywords[1].id | https://openalex.org/keywords/dynamics |
| keywords[1].score | 0.4642084240913391 |
| keywords[1].display_name | Dynamics (music) |
| keywords[2].id | https://openalex.org/keywords/statistical-physics |
| keywords[2].score | 0.45944109559059143 |
| keywords[2].display_name | Statistical physics |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.42525044083595276 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/beam |
| keywords[4].score | 0.4197782576084137 |
| keywords[4].display_name | Beam (structure) |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.3010093867778778 |
| keywords[5].display_name | Physics |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.17811140418052673 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/optics |
| keywords[7].score | 0.1634821891784668 |
| keywords[7].display_name | Optics |
| keywords[8].id | https://openalex.org/keywords/seismology |
| keywords[8].score | 0.07348698377609253 |
| keywords[8].display_name | Seismology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2408.07847 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2408.07847 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2408.07847 |
| locations[1].id | doi:10.48550/arxiv.2408.07847 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2408.07847 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5062519467 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2678-9682 |
| authorships[0].author.display_name | Mahindra Rautela |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Rautela, Mahindra |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026917102 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2032-1875 |
| authorships[1].author.display_name | Alan Williams |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Williams, Alan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5029728208 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3203-0963 |
| authorships[2].author.display_name | Alexander Scheinker |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Scheinker, Alexander |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2408.07847 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10860 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9718000292778015 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Speech and Audio Processing |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2935759653, https://openalex.org/W3105167352, https://openalex.org/W54078636, https://openalex.org/W2954470139, https://openalex.org/W1501425562, https://openalex.org/W2902782467, https://openalex.org/W3084825885, https://openalex.org/W2298861036, https://openalex.org/W2388146055 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2408.07847 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2408.07847 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2408.07847 |
| primary_location.id | pmh:oai:arXiv.org:2408.07847 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2408.07847 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2408.07847 |
| publication_date | 2024-08-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 23, 65, 88, 100, 105, 122, 179 |
| abstract_inverted_index.6D | 95, 134 |
| abstract_inverted_index.In | 79 |
| abstract_inverted_index.an | 53, 56 |
| abstract_inverted_index.as | 152 |
| abstract_inverted_index.at | 178 |
| abstract_inverted_index.in | 22, 52, 117, 204 |
| abstract_inverted_index.is | 9, 55, 182 |
| abstract_inverted_index.of | 6, 40, 49, 59, 75, 99, 162, 198 |
| abstract_inverted_index.on | 144 |
| abstract_inverted_index.or | 146 |
| abstract_inverted_index.to | 93, 187 |
| abstract_inverted_index.we | 86, 110 |
| abstract_inverted_index.The | 38, 128, 154 |
| abstract_inverted_index.all | 139, 192 |
| abstract_inverted_index.are | 27 |
| abstract_inverted_index.can | 132 |
| abstract_inverted_index.for | 19, 33, 72, 191 |
| abstract_inverted_index.the | 4, 113, 118, 159, 163, 168, 185, 196, 199, 205 |
| abstract_inverted_index.LSTM | 186, 200 |
| abstract_inverted_index.Long | 123 |
| abstract_inverted_index.Many | 14 |
| abstract_inverted_index.This | 62, 171 |
| abstract_inverted_index.also | 157 |
| abstract_inverted_index.beam | 26, 77, 103 |
| abstract_inverted_index.data | 166 |
| abstract_inverted_index.deep | 83 |
| abstract_inverted_index.high | 15 |
| abstract_inverted_index.into | 104 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.Model | 69 |
| abstract_inverted_index.based | 143 |
| abstract_inverted_index.data. | 207 |
| abstract_inverted_index.given | 46, 180 |
| abstract_inverted_index.input | 165, 206 |
| abstract_inverted_index.learn | 112 |
| abstract_inverted_index.model | 156 |
| abstract_inverted_index.paper | 63 |
| abstract_inverted_index.phase | 44, 96, 135, 149 |
| abstract_inverted_index.space | 45, 97, 120, 136, 150 |
| abstract_inverted_index.their | 31 |
| abstract_inverted_index.under | 3 |
| abstract_inverted_index.using | 121 |
| abstract_inverted_index.which | 173 |
| abstract_inverted_index.(CVAE) | 92 |
| abstract_inverted_index.(LSTM) | 126 |
| abstract_inverted_index.(rLEM) | 70 |
| abstract_inverted_index.Latent | 67 |
| abstract_inverted_index.Memory | 125 |
| abstract_inverted_index.across | 138 |
| abstract_inverted_index.bounds | 190 |
| abstract_inverted_index.fields | 8 |
| abstract_inverted_index.latent | 107, 119, 169 |
| abstract_inverted_index.single | 145 |
| abstract_inverted_index.space. | 170 |
| abstract_inverted_index.within | 167 |
| abstract_inverted_index.Charged | 0 |
| abstract_inverted_index.against | 201 |
| abstract_inverted_index.charged | 24, 50, 101 |
| abstract_inverted_index.coupled | 129 |
| abstract_inverted_index.forward | 76 |
| abstract_inverted_index.growing | 60 |
| abstract_inverted_index.inputs. | 153 |
| abstract_inverted_index.inverse | 35, 57, 114 |
| abstract_inverted_index.module, | 181 |
| abstract_inverted_index.online. | 37 |
| abstract_inverted_index.predict | 133 |
| abstract_inverted_index.problem | 39, 58 |
| abstract_inverted_index.project | 94 |
| abstract_inverted_index.reverse | 66 |
| abstract_inverted_index.solving | 34 |
| abstract_inverted_index.through | 184 |
| abstract_inverted_index.utility | 32 |
| abstract_inverted_index.utilize | 87 |
| abstract_inverted_index.behavior | 21 |
| abstract_inverted_index.captures | 158 |
| abstract_inverted_index.designed | 71 |
| abstract_inverted_index.dynamics | 2, 116 |
| abstract_inverted_index.estimate | 188 |
| abstract_inverted_index.learning | 84 |
| abstract_inverted_index.limiting | 30 |
| abstract_inverted_index.multiple | 147 |
| abstract_inverted_index.network. | 127 |
| abstract_inverted_index.particle | 1, 25, 102 |
| abstract_inverted_index.problem. | 13 |
| abstract_inverted_index.problems | 36 |
| abstract_inverted_index.proposed | 155 |
| abstract_inverted_index.reflects | 174 |
| abstract_inverted_index.sections | 142 |
| abstract_inverted_index.temporal | 73, 115 |
| abstract_inverted_index.two-step | 81 |
| abstract_inverted_index.upstream | 42, 140, 193 |
| abstract_inverted_index.CVAE-LSTM | 130 |
| abstract_inverted_index.Evolution | 68 |
| abstract_inverted_index.aleatoric | 160 |
| abstract_inverted_index.dynamics. | 78 |
| abstract_inverted_index.framework | 131 |
| abstract_inverted_index.influence | 5 |
| abstract_inverted_index.inversion | 74 |
| abstract_inverted_index.particles | 51 |
| abstract_inverted_index.potential | 175 |
| abstract_inverted_index.uncertain | 176 |
| abstract_inverted_index.Short-Term | 124 |
| abstract_inverted_index.downstream | 47, 148 |
| abstract_inverted_index.estimating | 41 |
| abstract_inverted_index.expensive, | 29 |
| abstract_inverted_index.framework, | 85 |
| abstract_inverted_index.introduces | 64 |
| abstract_inverted_index.predicting | 20 |
| abstract_inverted_index.propagated | 183 |
| abstract_inverted_index.robustness | 197 |
| abstract_inverted_index.simulators | 18 |
| abstract_inverted_index.variations | 203 |
| abstract_inverted_index.Autoencoder | 91 |
| abstract_inverted_index.Conditional | 89 |
| abstract_inverted_index.Variational | 90 |
| abstract_inverted_index.accelerator | 54 |
| abstract_inverted_index.challenging | 11 |
| abstract_inverted_index.importance. | 61 |
| abstract_inverted_index.performance | 16 |
| abstract_inverted_index.projections | 98, 137 |
| abstract_inverted_index.uncertainty | 161, 189 |
| abstract_inverted_index.accelerating | 141 |
| abstract_inverted_index.measurements | 48, 151, 177 |
| abstract_inverted_index.predictions, | 194 |
| abstract_inverted_index.uncertainty, | 172 |
| abstract_inverted_index.Subsequently, | 109 |
| abstract_inverted_index.demonstrating | 195 |
| abstract_inverted_index.distribution. | 108 |
| abstract_inverted_index.physics-based | 17 |
| abstract_inverted_index.spatiotemporal | 12 |
| abstract_inverted_index.computationally | 28 |
| abstract_inverted_index.electromagnetic | 7 |
| abstract_inverted_index.in-distribution | 202 |
| abstract_inverted_index.self-supervised | 82 |
| abstract_inverted_index.six-dimensional | 43 |
| abstract_inverted_index.autoregressively | 111 |
| abstract_inverted_index.high-dimensional | 164 |
| abstract_inverted_index.lower-dimensional | 106 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.34258191 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |