Time Matters: Time-Aware LSTMs for Predictive Business Process Monitoring Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2010.00889
Predictive business process monitoring (PBPM) aims to predict future process behavior during ongoing process executions based on event log data. Especially, techniques for the next activity and timestamp prediction can help to improve the performance of operational business processes. Recently, many PBPM solutions based on deep learning were proposed by researchers. Due to the sequential nature of event log data, a common choice is to apply recurrent neural networks with long short-term memory (LSTM) cells. We argue, that the elapsed time between events is informative. However, current PBPM techniques mainly use 'vanilla' LSTM cells and hand-crafted time-related control flow features. To better model the time dependencies between events, we propose a new PBPM technique based on time-aware LSTM (T-LSTM) cells. T-LSTM cells incorporate the elapsed time between consecutive events inherently to adjust the cell memory. Furthermore, we introduce cost-sensitive learning to account for the common class imbalance in event logs. Our experiments on publicly available benchmark event logs indicate the effectiveness of the introduced techniques.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2010.00889
- https://arxiv.org/pdf/2010.00889
- OA Status
- green
- Cited By
- 6
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3089641966
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3089641966Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2010.00889Digital Object Identifier
- Title
-
Time Matters: Time-Aware LSTMs for Predictive Business Process MonitoringWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-02Full publication date if available
- Authors
-
An Nguyen, Srijeet Chatterjee, Sven Weinzierl, Leo Schwinn, Martin Matzner, Bjoern M. EskofierList of authors in order
- Landing page
-
https://arxiv.org/abs/2010.00889Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2010.00889Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2010.00889Direct OA link when available
- Concepts
-
Computer science, Timestamp, Benchmark (surveying), Event (particle physics), Business process, Artificial intelligence, Process (computing), Machine learning, Recurrent neural network, Deep learning, Long short term memory, Class (philosophy), Process mining, Artificial neural network, Data mining, Business process modeling, Real-time computing, Work in process, Geography, Marketing, Operating system, Geodesy, Quantum mechanics, Physics, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2022: 1, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3089641966 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2010.00889 |
| ids.doi | https://doi.org/10.48550/arxiv.2010.00889 |
| ids.mag | 3089641966 |
| ids.openalex | https://openalex.org/W3089641966 |
| fwci | |
| type | preprint |
| title | Time Matters: Time-Aware LSTMs for Predictive Business Process Monitoring |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10703 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.9976999759674072 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1404 |
| topics[0].subfield.display_name | Management Information Systems |
| topics[0].display_name | Business Process Modeling and Analysis |
| topics[1].id | https://openalex.org/T12127 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9912999868392944 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Software System Performance and Reliability |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9778000116348267 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8498534560203552 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C113954288 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8361548185348511 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q186885 |
| concepts[1].display_name | Timestamp |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7356868982315063 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C2779662365 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6769798994064331 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[3].display_name | Event (particle physics) |
| concepts[4].id | https://openalex.org/C85345410 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6305076479911804 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q851587 |
| concepts[4].display_name | Business process |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5923739671707153 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C98045186 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5801525115966797 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[6].display_name | Process (computing) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5760096311569214 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C147168706 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5260027647018433 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[8].display_name | Recurrent neural network |
| concepts[9].id | https://openalex.org/C108583219 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5100420117378235 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[9].display_name | Deep learning |
| concepts[10].id | https://openalex.org/C133488467 |
| concepts[10].level | 4 |
| concepts[10].score | 0.5027625560760498 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6673524 |
| concepts[10].display_name | Long short term memory |
| concepts[11].id | https://openalex.org/C2777212361 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4497315287590027 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[11].display_name | Class (philosophy) |
| concepts[12].id | https://openalex.org/C124670913 |
| concepts[12].level | 5 |
| concepts[12].score | 0.4199099540710449 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2608526 |
| concepts[12].display_name | Process mining |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.38014036417007446 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C124101348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.37230104207992554 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[14].display_name | Data mining |
| concepts[15].id | https://openalex.org/C207505557 |
| concepts[15].level | 4 |
| concepts[15].score | 0.3351719379425049 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q4374012 |
| concepts[15].display_name | Business process modeling |
| concepts[16].id | https://openalex.org/C79403827 |
| concepts[16].level | 1 |
| concepts[16].score | 0.20958611369132996 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[16].display_name | Real-time computing |
| concepts[17].id | https://openalex.org/C174998907 |
| concepts[17].level | 2 |
| concepts[17].score | 0.1979396939277649 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q357662 |
| concepts[17].display_name | Work in process |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C162853370 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[19].display_name | Marketing |
| concepts[20].id | https://openalex.org/C111919701 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[20].display_name | Operating system |
| concepts[21].id | https://openalex.org/C13280743 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[21].display_name | Geodesy |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| concepts[24].id | https://openalex.org/C144133560 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[24].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8498534560203552 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/timestamp |
| keywords[1].score | 0.8361548185348511 |
| keywords[1].display_name | Timestamp |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.7356868982315063 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/event |
| keywords[3].score | 0.6769798994064331 |
| keywords[3].display_name | Event (particle physics) |
| keywords[4].id | https://openalex.org/keywords/business-process |
| keywords[4].score | 0.6305076479911804 |
| keywords[4].display_name | Business process |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5923739671707153 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/process |
| keywords[6].score | 0.5801525115966797 |
| keywords[6].display_name | Process (computing) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5760096311569214 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[8].score | 0.5260027647018433 |
| keywords[8].display_name | Recurrent neural network |
| keywords[9].id | https://openalex.org/keywords/deep-learning |
| keywords[9].score | 0.5100420117378235 |
| keywords[9].display_name | Deep learning |
| keywords[10].id | https://openalex.org/keywords/long-short-term-memory |
| keywords[10].score | 0.5027625560760498 |
| keywords[10].display_name | Long short term memory |
| keywords[11].id | https://openalex.org/keywords/class |
| keywords[11].score | 0.4497315287590027 |
| keywords[11].display_name | Class (philosophy) |
| keywords[12].id | https://openalex.org/keywords/process-mining |
| keywords[12].score | 0.4199099540710449 |
| keywords[12].display_name | Process mining |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.38014036417007446 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/data-mining |
| keywords[14].score | 0.37230104207992554 |
| keywords[14].display_name | Data mining |
| keywords[15].id | https://openalex.org/keywords/business-process-modeling |
| keywords[15].score | 0.3351719379425049 |
| keywords[15].display_name | Business process modeling |
| keywords[16].id | https://openalex.org/keywords/real-time-computing |
| keywords[16].score | 0.20958611369132996 |
| keywords[16].display_name | Real-time computing |
| keywords[17].id | https://openalex.org/keywords/work-in-process |
| keywords[17].score | 0.1979396939277649 |
| keywords[17].display_name | Work in process |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2010.00889 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2010.00889 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2010.00889 |
| locations[1].id | doi:10.48550/arxiv.2010.00889 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2010.00889 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5053758786 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8759-7641 |
| authorships[0].author.display_name | An Nguyen |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I181369854 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. of Comput. Sci., Friedrich-Alexander-Univ. Erlangen-Nurnberg (FAU), Erlangen, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I181369854 |
| authorships[0].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | An Nguyen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. of Comput. Sci., Friedrich-Alexander-Univ. Erlangen-Nurnberg (FAU), Erlangen, Germany |
| authorships[1].author.id | https://openalex.org/A5063730105 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Srijeet Chatterjee |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I181369854 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. of Comput. Sci., Friedrich-Alexander-Univ. Erlangen-Nurnberg (FAU), Erlangen, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I181369854 |
| authorships[1].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Srijeet Chatterjee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept. of Comput. Sci., Friedrich-Alexander-Univ. Erlangen-Nurnberg (FAU), Erlangen, Germany |
| authorships[2].author.id | https://openalex.org/A5057780661 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2268-7352 |
| authorships[2].author.display_name | Sven Weinzierl |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I181369854 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Information Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Nürnberg, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I181369854 |
| authorships[2].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sven Weinzierl |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Information Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Nürnberg, Germany |
| authorships[3].author.id | https://openalex.org/A5028233502 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3967-2202 |
| authorships[3].author.display_name | Leo Schwinn |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I181369854 |
| authorships[3].affiliations[0].raw_affiliation_string | Dept. of Comput. Sci., Friedrich-Alexander-Univ. Erlangen-Nurnberg (FAU), Erlangen, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I181369854 |
| authorships[3].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Leo Schwinn |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dept. of Comput. Sci., Friedrich-Alexander-Univ. Erlangen-Nurnberg (FAU), Erlangen, Germany |
| authorships[4].author.id | https://openalex.org/A5067830118 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5244-3928 |
| authorships[4].author.display_name | Martin Matzner |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I181369854 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Information Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Nürnberg, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I181369854 |
| authorships[4].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Martin Matzner |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Information Systems, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Nürnberg, Germany |
| authorships[5].author.id | https://openalex.org/A5014144494 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0417-0336 |
| authorships[5].author.display_name | Bjoern M. Eskofier |
| authorships[5].countries | DE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I181369854 |
| authorships[5].affiliations[0].raw_affiliation_string | Dept. of Comput. Sci., Friedrich-Alexander-Univ. Erlangen-Nurnberg (FAU), Erlangen, Germany |
| authorships[5].institutions[0].id | https://openalex.org/I181369854 |
| authorships[5].institutions[0].ror | https://ror.org/00f7hpc57 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I181369854 |
| authorships[5].institutions[0].country_code | DE |
| authorships[5].institutions[0].display_name | Friedrich-Alexander-Universität Erlangen-Nürnberg |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Bjoern Eskofier |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Dept. of Comput. Sci., Friedrich-Alexander-Univ. Erlangen-Nurnberg (FAU), Erlangen, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2010.00889 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Time Matters: Time-Aware LSTMs for Predictive Business Process Monitoring |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10703 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.9976999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1404 |
| primary_topic.subfield.display_name | Management Information Systems |
| primary_topic.display_name | Business Process Modeling and Analysis |
| related_works | https://openalex.org/W2150478723, https://openalex.org/W4365511202, https://openalex.org/W4300560926, https://openalex.org/W2912153778, https://openalex.org/W4387163678, https://openalex.org/W4288108708, https://openalex.org/W2050159024, https://openalex.org/W2156732239, https://openalex.org/W2345053703, https://openalex.org/W4248246100 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2010.00889 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2010.00889 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2010.00889 |
| primary_location.id | pmh:oai:arXiv.org:2010.00889 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2010.00889 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2010.00889 |
| publication_date | 2020-10-02 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2919115771, https://openalex.org/W1689711448, https://openalex.org/W3091710143, https://openalex.org/W2581522324, https://openalex.org/W2742491462, https://openalex.org/W2795545648, https://openalex.org/W2107878631, https://openalex.org/W2064675550, https://openalex.org/W3022806883, https://openalex.org/W2969940319, https://openalex.org/W1846981065, https://openalex.org/W3072556253, https://openalex.org/W2949676527, https://openalex.org/W2786462606, https://openalex.org/W2884606998, https://openalex.org/W2963674330, https://openalex.org/W2501271607, https://openalex.org/W2584722588 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 60, 110 |
| abstract_inverted_index.To | 100 |
| abstract_inverted_index.We | 75 |
| abstract_inverted_index.by | 49 |
| abstract_inverted_index.in | 147 |
| abstract_inverted_index.is | 63, 83 |
| abstract_inverted_index.of | 35, 56, 161 |
| abstract_inverted_index.on | 16, 44, 115, 152 |
| abstract_inverted_index.to | 6, 31, 52, 64, 130, 140 |
| abstract_inverted_index.we | 108, 136 |
| abstract_inverted_index.Due | 51 |
| abstract_inverted_index.Our | 150 |
| abstract_inverted_index.and | 26, 94 |
| abstract_inverted_index.can | 29 |
| abstract_inverted_index.for | 22, 142 |
| abstract_inverted_index.log | 18, 58 |
| abstract_inverted_index.new | 111 |
| abstract_inverted_index.the | 23, 33, 53, 78, 103, 123, 132, 143, 159, 162 |
| abstract_inverted_index.use | 90 |
| abstract_inverted_index.LSTM | 92, 117 |
| abstract_inverted_index.PBPM | 41, 87, 112 |
| abstract_inverted_index.aims | 5 |
| abstract_inverted_index.cell | 133 |
| abstract_inverted_index.deep | 45 |
| abstract_inverted_index.flow | 98 |
| abstract_inverted_index.help | 30 |
| abstract_inverted_index.logs | 157 |
| abstract_inverted_index.long | 70 |
| abstract_inverted_index.many | 40 |
| abstract_inverted_index.next | 24 |
| abstract_inverted_index.that | 77 |
| abstract_inverted_index.time | 80, 104, 125 |
| abstract_inverted_index.were | 47 |
| abstract_inverted_index.with | 69 |
| abstract_inverted_index.apply | 65 |
| abstract_inverted_index.based | 15, 43, 114 |
| abstract_inverted_index.cells | 93, 121 |
| abstract_inverted_index.class | 145 |
| abstract_inverted_index.data, | 59 |
| abstract_inverted_index.data. | 19 |
| abstract_inverted_index.event | 17, 57, 148, 156 |
| abstract_inverted_index.logs. | 149 |
| abstract_inverted_index.model | 102 |
| abstract_inverted_index.(LSTM) | 73 |
| abstract_inverted_index.(PBPM) | 4 |
| abstract_inverted_index.T-LSTM | 120 |
| abstract_inverted_index.adjust | 131 |
| abstract_inverted_index.argue, | 76 |
| abstract_inverted_index.better | 101 |
| abstract_inverted_index.cells. | 74, 119 |
| abstract_inverted_index.choice | 62 |
| abstract_inverted_index.common | 61, 144 |
| abstract_inverted_index.during | 11 |
| abstract_inverted_index.events | 82, 128 |
| abstract_inverted_index.future | 8 |
| abstract_inverted_index.mainly | 89 |
| abstract_inverted_index.memory | 72 |
| abstract_inverted_index.nature | 55 |
| abstract_inverted_index.neural | 67 |
| abstract_inverted_index.account | 141 |
| abstract_inverted_index.between | 81, 106, 126 |
| abstract_inverted_index.control | 97 |
| abstract_inverted_index.current | 86 |
| abstract_inverted_index.elapsed | 79, 124 |
| abstract_inverted_index.events, | 107 |
| abstract_inverted_index.improve | 32 |
| abstract_inverted_index.memory. | 134 |
| abstract_inverted_index.ongoing | 12 |
| abstract_inverted_index.predict | 7 |
| abstract_inverted_index.process | 2, 9, 13 |
| abstract_inverted_index.propose | 109 |
| abstract_inverted_index.(T-LSTM) | 118 |
| abstract_inverted_index.However, | 85 |
| abstract_inverted_index.activity | 25 |
| abstract_inverted_index.behavior | 10 |
| abstract_inverted_index.business | 1, 37 |
| abstract_inverted_index.indicate | 158 |
| abstract_inverted_index.learning | 46, 139 |
| abstract_inverted_index.networks | 68 |
| abstract_inverted_index.proposed | 48 |
| abstract_inverted_index.publicly | 153 |
| abstract_inverted_index.'vanilla' | 91 |
| abstract_inverted_index.Recently, | 39 |
| abstract_inverted_index.available | 154 |
| abstract_inverted_index.benchmark | 155 |
| abstract_inverted_index.features. | 99 |
| abstract_inverted_index.imbalance | 146 |
| abstract_inverted_index.introduce | 137 |
| abstract_inverted_index.recurrent | 66 |
| abstract_inverted_index.solutions | 42 |
| abstract_inverted_index.technique | 113 |
| abstract_inverted_index.timestamp | 27 |
| abstract_inverted_index.Predictive | 0 |
| abstract_inverted_index.executions | 14 |
| abstract_inverted_index.inherently | 129 |
| abstract_inverted_index.introduced | 163 |
| abstract_inverted_index.monitoring | 3 |
| abstract_inverted_index.prediction | 28 |
| abstract_inverted_index.processes. | 38 |
| abstract_inverted_index.sequential | 54 |
| abstract_inverted_index.short-term | 71 |
| abstract_inverted_index.techniques | 21, 88 |
| abstract_inverted_index.time-aware | 116 |
| abstract_inverted_index.Especially, | 20 |
| abstract_inverted_index.consecutive | 127 |
| abstract_inverted_index.experiments | 151 |
| abstract_inverted_index.incorporate | 122 |
| abstract_inverted_index.operational | 36 |
| abstract_inverted_index.performance | 34 |
| abstract_inverted_index.techniques. | 164 |
| abstract_inverted_index.Furthermore, | 135 |
| abstract_inverted_index.dependencies | 105 |
| abstract_inverted_index.hand-crafted | 95 |
| abstract_inverted_index.informative. | 84 |
| abstract_inverted_index.researchers. | 50 |
| abstract_inverted_index.time-related | 96 |
| abstract_inverted_index.effectiveness | 160 |
| abstract_inverted_index.cost-sensitive | 138 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |