TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.20774
In long-term time series forecasting, different variables often influence the target variable over distinct time intervals, a challenge known as the multi-delay issue. Traditional models typically process all variables or time points uniformly, which limits their ability to capture complex variable relationships and obtain non-trivial time representations. To address this issue, we propose TimePro, an innovative Mamba-based model that constructs variate- and time-aware hyper-states. Unlike conventional approaches that merely transfer plain states across variable or time dimensions, TimePro preserves the fine-grained temporal features of each variate token and adaptively selects the focused time points to tune the plain state. The reconstructed hyper-state can perceive both variable relationships and salient temporal information, which helps the model make accurate forecasting. In experiments, TimePro performs competitively on eight real-world long-term forecasting benchmarks with satisfactory linear complexity. Code is available at https://github.com/xwmaxwma/TimePro.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.20774
- https://arxiv.org/pdf/2505.20774
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415036302
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415036302Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.20774Digital Object Identifier
- Title
-
TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-stateWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-27Full publication date if available
- Authors
-
Xiaowen Ma, Zemin Ni, Shuai Xiao, Xinghao ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.20774Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.20774Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.20774Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415036302 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.20774 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.20774 |
| ids.openalex | https://openalex.org/W4415036302 |
| fwci | |
| type | preprint |
| title | TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12205 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Time Series Analysis and Forecasting |
| topics[1].id | https://openalex.org/T11326 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9323999881744385 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Stock Market Forecasting Methods |
| topics[2].id | https://openalex.org/T11918 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.928600013256073 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Forecasting Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.20774 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.20774 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.20774 |
| locations[1].id | doi:10.48550/arxiv.2505.20774 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.20774 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100652936 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5031-2641 |
| authorships[0].author.display_name | Xiaowen Ma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ma, Xiaowen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110504160 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Zemin Ni |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ni, Zhenliang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102722119 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8550-5064 |
| authorships[2].author.display_name | Shuai Xiao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiao, Shuai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5006817088 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2102-8235 |
| authorships[3].author.display_name | Xinghao Chen |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Chen, Xinghao |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.20774 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TimePro: Efficient Multivariate Long-term Time Series Forecasting with Variable- and Time-Aware Hyper-state |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12205 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Time Series Analysis and Forecasting |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.20774 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.20774 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.20774 |
| primary_location.id | pmh:oai:arXiv.org:2505.20774 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.20774 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.20774 |
| publication_date | 2025-05-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 16 |
| abstract_inverted_index.In | 0, 118 |
| abstract_inverted_index.To | 47 |
| abstract_inverted_index.an | 54 |
| abstract_inverted_index.as | 19 |
| abstract_inverted_index.at | 136 |
| abstract_inverted_index.is | 134 |
| abstract_inverted_index.of | 83 |
| abstract_inverted_index.on | 123 |
| abstract_inverted_index.or | 29, 74 |
| abstract_inverted_index.to | 37, 94 |
| abstract_inverted_index.we | 51 |
| abstract_inverted_index.The | 99 |
| abstract_inverted_index.all | 27 |
| abstract_inverted_index.and | 42, 61, 87, 107 |
| abstract_inverted_index.can | 102 |
| abstract_inverted_index.the | 9, 20, 79, 90, 96, 113 |
| abstract_inverted_index.Code | 133 |
| abstract_inverted_index.both | 104 |
| abstract_inverted_index.each | 84 |
| abstract_inverted_index.make | 115 |
| abstract_inverted_index.over | 12 |
| abstract_inverted_index.that | 58, 67 |
| abstract_inverted_index.this | 49 |
| abstract_inverted_index.time | 2, 14, 30, 45, 75, 92 |
| abstract_inverted_index.tune | 95 |
| abstract_inverted_index.with | 129 |
| abstract_inverted_index.eight | 124 |
| abstract_inverted_index.helps | 112 |
| abstract_inverted_index.known | 18 |
| abstract_inverted_index.model | 57, 114 |
| abstract_inverted_index.often | 7 |
| abstract_inverted_index.plain | 70, 97 |
| abstract_inverted_index.their | 35 |
| abstract_inverted_index.token | 86 |
| abstract_inverted_index.which | 33, 111 |
| abstract_inverted_index.Unlike | 64 |
| abstract_inverted_index.across | 72 |
| abstract_inverted_index.issue, | 50 |
| abstract_inverted_index.issue. | 22 |
| abstract_inverted_index.limits | 34 |
| abstract_inverted_index.linear | 131 |
| abstract_inverted_index.merely | 68 |
| abstract_inverted_index.models | 24 |
| abstract_inverted_index.obtain | 43 |
| abstract_inverted_index.points | 31, 93 |
| abstract_inverted_index.series | 3 |
| abstract_inverted_index.state. | 98 |
| abstract_inverted_index.states | 71 |
| abstract_inverted_index.target | 10 |
| abstract_inverted_index.TimePro | 77, 120 |
| abstract_inverted_index.ability | 36 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.capture | 38 |
| abstract_inverted_index.complex | 39 |
| abstract_inverted_index.focused | 91 |
| abstract_inverted_index.process | 26 |
| abstract_inverted_index.propose | 52 |
| abstract_inverted_index.salient | 108 |
| abstract_inverted_index.selects | 89 |
| abstract_inverted_index.variate | 85 |
| abstract_inverted_index.TimePro, | 53 |
| abstract_inverted_index.accurate | 116 |
| abstract_inverted_index.distinct | 13 |
| abstract_inverted_index.features | 82 |
| abstract_inverted_index.perceive | 103 |
| abstract_inverted_index.performs | 121 |
| abstract_inverted_index.temporal | 81, 109 |
| abstract_inverted_index.transfer | 69 |
| abstract_inverted_index.variable | 11, 40, 73, 105 |
| abstract_inverted_index.variate- | 60 |
| abstract_inverted_index.available | 135 |
| abstract_inverted_index.challenge | 17 |
| abstract_inverted_index.different | 5 |
| abstract_inverted_index.influence | 8 |
| abstract_inverted_index.long-term | 1, 126 |
| abstract_inverted_index.preserves | 78 |
| abstract_inverted_index.typically | 25 |
| abstract_inverted_index.variables | 6, 28 |
| abstract_inverted_index.adaptively | 88 |
| abstract_inverted_index.approaches | 66 |
| abstract_inverted_index.benchmarks | 128 |
| abstract_inverted_index.constructs | 59 |
| abstract_inverted_index.innovative | 55 |
| abstract_inverted_index.intervals, | 15 |
| abstract_inverted_index.real-world | 125 |
| abstract_inverted_index.time-aware | 62 |
| abstract_inverted_index.uniformly, | 32 |
| abstract_inverted_index.Mamba-based | 56 |
| abstract_inverted_index.Traditional | 23 |
| abstract_inverted_index.complexity. | 132 |
| abstract_inverted_index.dimensions, | 76 |
| abstract_inverted_index.forecasting | 127 |
| abstract_inverted_index.hyper-state | 101 |
| abstract_inverted_index.multi-delay | 21 |
| abstract_inverted_index.non-trivial | 44 |
| abstract_inverted_index.conventional | 65 |
| abstract_inverted_index.experiments, | 119 |
| abstract_inverted_index.fine-grained | 80 |
| abstract_inverted_index.forecasting, | 4 |
| abstract_inverted_index.forecasting. | 117 |
| abstract_inverted_index.information, | 110 |
| abstract_inverted_index.satisfactory | 130 |
| abstract_inverted_index.competitively | 122 |
| abstract_inverted_index.hyper-states. | 63 |
| abstract_inverted_index.reconstructed | 100 |
| abstract_inverted_index.relationships | 41, 106 |
| abstract_inverted_index.representations. | 46 |
| abstract_inverted_index.https://github.com/xwmaxwma/TimePro. | 137 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |