TimeWeaver: Time-Aware Sequential Recommender System via Dual-Stream Temporal Network Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/systems13100857
Recommender systems are data-driven tools designed to assist or automate users’ decision-making. With the growing demand of personalized sequential recommendations in business intelligence or e-commerce, effectively capturing temporal information from massive user-sequence data has become a crucial challenge. State-of-the-art attention-based models often struggle to balance performance with computational cost, while traditional convolutional neural networks suffer from limited receptive fields and rigid architectures that inadequately model dynamic user interests. To address these limitations, this paper proposes TimeWeaver, a time-aware dual-stream network for sequential recommendation, whose core innovations comprise three key components. First, it employs a re-parameterized large-kernel convolution to expand the effective receptive field. Second, we design a Time-Aware Augmentation mechanism that integrates inter-event time-interval information into positional encodings of items. This allows it to perceive the temporal dynamics of user behavior. Finally, we propose a dual-stream architecture to jointly capture dependencies across different time scales. The context stream employs a modern Temporal Convolutional Network (TCN) structure to strengthen the memorization of users’ medium- and long-term interests. In parallel, the dynamic stream leverages an Exponential Moving Average (EMA) mechanism to weight recent behaviors for sensitively capturing users’ immediate interests. This dual-stream design allows TimeWeaver to comprehensively extract both long- and short-term sequential features. Extensive experiments on three public e-commerce datasets demonstrate TimeWeaver’s superiority. Compared to the strongest baseline model, TimeWeaver achieves average relative improvements of 4.62%, 9.59%, and 4.59% across all metrics on the Beauty, Sports, and Toys datasets, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/systems13100857
- https://www.mdpi.com/2079-8954/13/10/857/pdf?version=1759134640
- OA Status
- gold
- References
- 27
- OpenAlex ID
- https://openalex.org/W4414623981
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414623981Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/systems13100857Digital Object Identifier
- Title
-
TimeWeaver: Time-Aware Sequential Recommender System via Dual-Stream Temporal NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-29Full publication date if available
- Authors
-
Yang Liu, Tao Wang, Yan MaList of authors in order
- Landing page
-
https://doi.org/10.3390/systems13100857Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-8954/13/10/857/pdf?version=1759134640Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-8954/13/10/857/pdf?version=1759134640Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414623981 |
|---|---|
| doi | https://doi.org/10.3390/systems13100857 |
| ids.doi | https://doi.org/10.3390/systems13100857 |
| ids.openalex | https://openalex.org/W4414623981 |
| fwci | 0.0 |
| type | article |
| title | TimeWeaver: Time-Aware Sequential Recommender System via Dual-Stream Temporal Network |
| biblio.issue | 10 |
| biblio.volume | 13 |
| biblio.last_page | 857 |
| biblio.first_page | 857 |
| topics[0].id | https://openalex.org/T11439 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Analysis and Summarization |
| topics[1].id | https://openalex.org/T10203 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996999979019165 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Recommender Systems and Techniques |
| topics[2].id | https://openalex.org/T11106 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9932000041007996 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Data Management and Algorithms |
| is_xpac | False |
| apc_list.value | 1600 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1732 |
| apc_paid.value | 1600 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1732 |
| language | en |
| locations[0].id | doi:10.3390/systems13100857 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210219410 |
| locations[0].source.issn | 2079-8954 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-8954 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Systems |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-8954/13/10/857/pdf?version=1759134640 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Systems |
| locations[0].landing_page_url | https://doi.org/10.3390/systems13100857 |
| locations[1].id | pmh:oai:doaj.org/article:22a73aed08f34c3ca0f82b8b381d6d5b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Systems, Vol 13, Iss 10, p 857 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/22a73aed08f34c3ca0f82b8b381d6d5b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101111377 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-4380-6888 |
| authorships[0].author.display_name | Yang Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I137056471 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Artificial Intelligence, Nanjing University of Finance and Economics, Nanjing 210023, China |
| authorships[0].institutions[0].id | https://openalex.org/I137056471 |
| authorships[0].institutions[0].ror | https://ror.org/031y8am81 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I137056471 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Finance and Economics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer and Artificial Intelligence, Nanjing University of Finance and Economics, Nanjing 210023, China |
| authorships[1].author.id | https://openalex.org/A5100453544 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5121-0599 |
| authorships[1].author.display_name | Tao Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I137056471 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer and Artificial Intelligence, Nanjing University of Finance and Economics, Nanjing 210023, China |
| authorships[1].institutions[0].id | https://openalex.org/I137056471 |
| authorships[1].institutions[0].ror | https://ror.org/031y8am81 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I137056471 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Finance and Economics |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tao Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer and Artificial Intelligence, Nanjing University of Finance and Economics, Nanjing 210023, China |
| authorships[2].author.id | https://openalex.org/A5102862727 |
| authorships[2].author.orcid | https://orcid.org/0009-0000-2525-0055 |
| authorships[2].author.display_name | Yan Ma |
| authorships[2].countries | CN, SG |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165932596 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Information Systems and Analytics, National University of Singapore, Singapore 117417, Singapore |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I137056471 |
| authorships[2].affiliations[1].raw_affiliation_string | School of Accounting, Nanjing University of Finance and Economics, Nanjing 210023, China |
| authorships[2].institutions[0].id | https://openalex.org/I137056471 |
| authorships[2].institutions[0].ror | https://ror.org/031y8am81 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I137056471 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Finance and Economics |
| authorships[2].institutions[1].id | https://openalex.org/I165932596 |
| authorships[2].institutions[1].ror | https://ror.org/01tgyzw49 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I165932596 |
| authorships[2].institutions[1].country_code | SG |
| authorships[2].institutions[1].display_name | National University of Singapore |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yan Ma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Information Systems and Analytics, National University of Singapore, Singapore 117417, Singapore, School of Accounting, Nanjing University of Finance and Economics, Nanjing 210023, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-8954/13/10/857/pdf?version=1759134640 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TimeWeaver: Time-Aware Sequential Recommender System via Dual-Stream Temporal Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11439 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Analysis and Summarization |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/systems13100857 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210219410 |
| best_oa_location.source.issn | 2079-8954 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-8954 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-8954/13/10/857/pdf?version=1759134640 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Systems |
| best_oa_location.landing_page_url | https://doi.org/10.3390/systems13100857 |
| primary_location.id | doi:10.3390/systems13100857 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210219410 |
| primary_location.source.issn | 2079-8954 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-8954 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Systems |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-8954/13/10/857/pdf?version=1759134640 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Systems |
| primary_location.landing_page_url | https://doi.org/10.3390/systems13100857 |
| publication_date | 2025-09-29 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4400689812, https://openalex.org/W2964296635, https://openalex.org/W2783272285, https://openalex.org/W2963853051, https://openalex.org/W2902040508, https://openalex.org/W4220974940, https://openalex.org/W3012163408, https://openalex.org/W4390726829, https://openalex.org/W2734755249, https://openalex.org/W2171279286, https://openalex.org/W2963367478, https://openalex.org/W2984100107, https://openalex.org/W4297816417, https://openalex.org/W4385825811, https://openalex.org/W4401834466, https://openalex.org/W4396758737, https://openalex.org/W2996931760, https://openalex.org/W3066766382, https://openalex.org/W3153218267, https://openalex.org/W4310477894, https://openalex.org/W4293243931, https://openalex.org/W4382240261, https://openalex.org/W4392384604, https://openalex.org/W2964044287, https://openalex.org/W2996851481, https://openalex.org/W4385245566, https://openalex.org/W3158951232 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 35, 76, 93, 106, 134, 149 |
| abstract_inverted_index.In | 166 |
| abstract_inverted_index.To | 68 |
| abstract_inverted_index.an | 172 |
| abstract_inverted_index.in | 20 |
| abstract_inverted_index.it | 91, 122 |
| abstract_inverted_index.of | 16, 118, 128, 160, 223 |
| abstract_inverted_index.on | 204, 231 |
| abstract_inverted_index.or | 8, 23 |
| abstract_inverted_index.to | 6, 43, 97, 123, 137, 156, 178, 193, 213 |
| abstract_inverted_index.we | 104, 132 |
| abstract_inverted_index.The | 145 |
| abstract_inverted_index.all | 229 |
| abstract_inverted_index.and | 59, 163, 198, 226, 235 |
| abstract_inverted_index.are | 2 |
| abstract_inverted_index.for | 80, 182 |
| abstract_inverted_index.has | 33 |
| abstract_inverted_index.key | 88 |
| abstract_inverted_index.the | 13, 99, 125, 158, 168, 214, 232 |
| abstract_inverted_index.This | 120, 188 |
| abstract_inverted_index.Toys | 236 |
| abstract_inverted_index.With | 12 |
| abstract_inverted_index.both | 196 |
| abstract_inverted_index.core | 84 |
| abstract_inverted_index.data | 32 |
| abstract_inverted_index.from | 29, 55 |
| abstract_inverted_index.into | 115 |
| abstract_inverted_index.that | 62, 110 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.time | 143 |
| abstract_inverted_index.user | 66, 129 |
| abstract_inverted_index.with | 46 |
| abstract_inverted_index.(EMA) | 176 |
| abstract_inverted_index.(TCN) | 154 |
| abstract_inverted_index.4.59% | 227 |
| abstract_inverted_index.cost, | 48 |
| abstract_inverted_index.long- | 197 |
| abstract_inverted_index.model | 64 |
| abstract_inverted_index.often | 41 |
| abstract_inverted_index.paper | 73 |
| abstract_inverted_index.rigid | 60 |
| abstract_inverted_index.these | 70 |
| abstract_inverted_index.three | 87, 205 |
| abstract_inverted_index.tools | 4 |
| abstract_inverted_index.while | 49 |
| abstract_inverted_index.whose | 83 |
| abstract_inverted_index.4.62%, | 224 |
| abstract_inverted_index.9.59%, | 225 |
| abstract_inverted_index.First, | 90 |
| abstract_inverted_index.Moving | 174 |
| abstract_inverted_index.across | 141, 228 |
| abstract_inverted_index.allows | 121, 191 |
| abstract_inverted_index.assist | 7 |
| abstract_inverted_index.become | 34 |
| abstract_inverted_index.demand | 15 |
| abstract_inverted_index.design | 105, 190 |
| abstract_inverted_index.expand | 98 |
| abstract_inverted_index.field. | 102 |
| abstract_inverted_index.fields | 58 |
| abstract_inverted_index.items. | 119 |
| abstract_inverted_index.model, | 217 |
| abstract_inverted_index.models | 40 |
| abstract_inverted_index.modern | 150 |
| abstract_inverted_index.neural | 52 |
| abstract_inverted_index.public | 206 |
| abstract_inverted_index.recent | 180 |
| abstract_inverted_index.stream | 147, 170 |
| abstract_inverted_index.suffer | 54 |
| abstract_inverted_index.weight | 179 |
| abstract_inverted_index.Average | 175 |
| abstract_inverted_index.Beauty, | 233 |
| abstract_inverted_index.Network | 153 |
| abstract_inverted_index.Second, | 103 |
| abstract_inverted_index.Sports, | 234 |
| abstract_inverted_index.address | 69 |
| abstract_inverted_index.average | 220 |
| abstract_inverted_index.balance | 44 |
| abstract_inverted_index.capture | 139 |
| abstract_inverted_index.context | 146 |
| abstract_inverted_index.crucial | 36 |
| abstract_inverted_index.dynamic | 65, 169 |
| abstract_inverted_index.employs | 92, 148 |
| abstract_inverted_index.extract | 195 |
| abstract_inverted_index.growing | 14 |
| abstract_inverted_index.jointly | 138 |
| abstract_inverted_index.limited | 56 |
| abstract_inverted_index.massive | 30 |
| abstract_inverted_index.medium- | 162 |
| abstract_inverted_index.metrics | 230 |
| abstract_inverted_index.network | 79 |
| abstract_inverted_index.propose | 133 |
| abstract_inverted_index.scales. | 144 |
| abstract_inverted_index.systems | 1 |
| abstract_inverted_index.Compared | 212 |
| abstract_inverted_index.Finally, | 131 |
| abstract_inverted_index.Temporal | 151 |
| abstract_inverted_index.achieves | 219 |
| abstract_inverted_index.automate | 9 |
| abstract_inverted_index.baseline | 216 |
| abstract_inverted_index.business | 21 |
| abstract_inverted_index.comprise | 86 |
| abstract_inverted_index.datasets | 208 |
| abstract_inverted_index.designed | 5 |
| abstract_inverted_index.dynamics | 127 |
| abstract_inverted_index.networks | 53 |
| abstract_inverted_index.perceive | 124 |
| abstract_inverted_index.proposes | 74 |
| abstract_inverted_index.relative | 221 |
| abstract_inverted_index.struggle | 42 |
| abstract_inverted_index.temporal | 27, 126 |
| abstract_inverted_index.users’ | 10, 161, 185 |
| abstract_inverted_index.Extensive | 202 |
| abstract_inverted_index.behavior. | 130 |
| abstract_inverted_index.behaviors | 181 |
| abstract_inverted_index.capturing | 26, 184 |
| abstract_inverted_index.datasets, | 237 |
| abstract_inverted_index.different | 142 |
| abstract_inverted_index.effective | 100 |
| abstract_inverted_index.encodings | 117 |
| abstract_inverted_index.features. | 201 |
| abstract_inverted_index.immediate | 186 |
| abstract_inverted_index.leverages | 171 |
| abstract_inverted_index.long-term | 164 |
| abstract_inverted_index.mechanism | 109, 177 |
| abstract_inverted_index.parallel, | 167 |
| abstract_inverted_index.receptive | 57, 101 |
| abstract_inverted_index.strongest | 215 |
| abstract_inverted_index.structure | 155 |
| abstract_inverted_index.Time-Aware | 107 |
| abstract_inverted_index.TimeWeaver | 192, 218 |
| abstract_inverted_index.challenge. | 37 |
| abstract_inverted_index.e-commerce | 207 |
| abstract_inverted_index.integrates | 111 |
| abstract_inverted_index.interests. | 67, 165, 187 |
| abstract_inverted_index.positional | 116 |
| abstract_inverted_index.sequential | 18, 81, 200 |
| abstract_inverted_index.short-term | 199 |
| abstract_inverted_index.strengthen | 157 |
| abstract_inverted_index.time-aware | 77 |
| abstract_inverted_index.Exponential | 173 |
| abstract_inverted_index.Recommender | 0 |
| abstract_inverted_index.TimeWeaver, | 75 |
| abstract_inverted_index.components. | 89 |
| abstract_inverted_index.convolution | 96 |
| abstract_inverted_index.data-driven | 3 |
| abstract_inverted_index.demonstrate | 209 |
| abstract_inverted_index.dual-stream | 78, 135, 189 |
| abstract_inverted_index.e-commerce, | 24 |
| abstract_inverted_index.effectively | 25 |
| abstract_inverted_index.experiments | 203 |
| abstract_inverted_index.information | 28, 114 |
| abstract_inverted_index.innovations | 85 |
| abstract_inverted_index.inter-event | 112 |
| abstract_inverted_index.performance | 45 |
| abstract_inverted_index.sensitively | 183 |
| abstract_inverted_index.traditional | 50 |
| abstract_inverted_index.Augmentation | 108 |
| abstract_inverted_index.architecture | 136 |
| abstract_inverted_index.dependencies | 140 |
| abstract_inverted_index.improvements | 222 |
| abstract_inverted_index.inadequately | 63 |
| abstract_inverted_index.intelligence | 22 |
| abstract_inverted_index.large-kernel | 95 |
| abstract_inverted_index.limitations, | 71 |
| abstract_inverted_index.memorization | 159 |
| abstract_inverted_index.personalized | 17 |
| abstract_inverted_index.superiority. | 211 |
| abstract_inverted_index.Convolutional | 152 |
| abstract_inverted_index.architectures | 61 |
| abstract_inverted_index.computational | 47 |
| abstract_inverted_index.convolutional | 51 |
| abstract_inverted_index.respectively. | 238 |
| abstract_inverted_index.time-interval | 113 |
| abstract_inverted_index.user-sequence | 31 |
| abstract_inverted_index.TimeWeaver’s | 210 |
| abstract_inverted_index.attention-based | 39 |
| abstract_inverted_index.comprehensively | 194 |
| abstract_inverted_index.recommendation, | 82 |
| abstract_inverted_index.recommendations | 19 |
| abstract_inverted_index.State-of-the-art | 38 |
| abstract_inverted_index.decision-making. | 11 |
| abstract_inverted_index.re-parameterized | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.47886928 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |