TissueMosaic enables cross-sample differential analysis of spatial transcriptomics datasets through self-supervised representation learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.11.07.622479
Spatial transcriptomics allows for the measurement of gene expression within native tissue context, thereby improving our understanding of how cell states are modulated by their microenvironment. Despite technological advancements, computational methods to link cell states with their microenvironment and perform comparative analysis across different samples and conditions are still underdeveloped. To address this, we introduce TissueMosaic ( Tissue MOtif-based SpAtial Inference across Conditions ), a self-supervised convolutional neural network designed to discover and represent tissue architectural motifs from multi-sample spatial transcriptomic datasets ( https://github.com/broadinstitute/TissueMosaic ). TissueMosaic effectively maps structurally similar tissue motifs close together in a learned latent space. TissueMosaic further links these motifs to gene expression, enabling the study of how changes in tissue structure impact function. TissueMosaic increases the signal-to-noise ratio of differential expression analysis through a motif enrichment strategy, resulting in more reliable detection of genes that covary with tissue structure. Here, we demonstrate TissueMosaic on high resolution spatial transcriptomics datasets across tissues, learning representations that outperform neighborhood cell-type composition baselines and existing methods on downstream tasks. We highlight genes and pathways in these tissues that are associated with changes in tissue structure across external conditions. These findings underscore the potential of self-supervised learning to significantly advance spatial transcriptomics research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.11.07.622479
- https://www.biorxiv.org/content/biorxiv/early/2024/11/09/2024.11.07.622479.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404204966
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404204966Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.11.07.622479Digital Object Identifier
- Title
-
TissueMosaic enables cross-sample differential analysis of spatial transcriptomics datasets through self-supervised representation learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-09Full publication date if available
- Authors
-
Sandeep Kambhampati, Luca D’Alessio, Fedor Grab, Stephen J. Fleming, Fei Chen, Mehrtash BabadiList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.11.07.622479Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/11/09/2024.11.07.622479.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/11/09/2024.11.07.622479.full.pdfDirect OA link when available
- Concepts
-
Representation (politics), Sample (material), Computer science, Pattern recognition (psychology), Differential (mechanical device), Artificial intelligence, Feature learning, Machine learning, Engineering, Chemistry, Chromatography, Aerospace engineering, Law, Political science, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404204966 |
|---|---|
| doi | https://doi.org/10.1101/2024.11.07.622479 |
| ids.doi | https://doi.org/10.1101/2024.11.07.622479 |
| ids.openalex | https://openalex.org/W4404204966 |
| fwci | 0.48024723 |
| type | preprint |
| title | TissueMosaic enables cross-sample differential analysis of spatial transcriptomics datasets through self-supervised representation learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9872000217437744 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T10885 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9240000247955322 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene expression and cancer classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776359362 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6415824890136719 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[0].display_name | Representation (politics) |
| concepts[1].id | https://openalex.org/C198531522 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6298032999038696 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[1].display_name | Sample (material) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.521001398563385 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.517078161239624 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C93226319 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5089888572692871 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q193137 |
| concepts[4].display_name | Differential (mechanical device) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5027544498443604 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C59404180 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4131626486778259 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[6].display_name | Feature learning |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38375791907310486 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08567535877227783 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06925079226493835 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C43617362 |
| concepts[10].level | 1 |
| concepts[10].score | 0.05991140007972717 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[10].display_name | Chromatography |
| concepts[11].id | https://openalex.org/C146978453 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[11].display_name | Aerospace engineering |
| concepts[12].id | https://openalex.org/C199539241 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[12].display_name | Law |
| concepts[13].id | https://openalex.org/C17744445 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[13].display_name | Political science |
| concepts[14].id | https://openalex.org/C94625758 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[14].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/representation |
| keywords[0].score | 0.6415824890136719 |
| keywords[0].display_name | Representation (politics) |
| keywords[1].id | https://openalex.org/keywords/sample |
| keywords[1].score | 0.6298032999038696 |
| keywords[1].display_name | Sample (material) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.521001398563385 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.517078161239624 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/differential |
| keywords[4].score | 0.5089888572692871 |
| keywords[4].display_name | Differential (mechanical device) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5027544498443604 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/feature-learning |
| keywords[6].score | 0.4131626486778259 |
| keywords[6].display_name | Feature learning |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.38375791907310486 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.08567535877227783 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/chemistry |
| keywords[9].score | 0.06925079226493835 |
| keywords[9].display_name | Chemistry |
| keywords[10].id | https://openalex.org/keywords/chromatography |
| keywords[10].score | 0.05991140007972717 |
| keywords[10].display_name | Chromatography |
| language | en |
| locations[0].id | doi:10.1101/2024.11.07.622479 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/09/2024.11.07.622479.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.11.07.622479 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5029943386 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3765-4679 |
| authorships[0].author.display_name | Sandeep Kambhampati |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2801851002 |
| authorships[0].affiliations[0].raw_affiliation_string | Harvard University |
| authorships[0].institutions[0].id | https://openalex.org/I2801851002 |
| authorships[0].institutions[0].ror | https://ror.org/006v7bf86 |
| authorships[0].institutions[0].type | other |
| authorships[0].institutions[0].lineage | https://openalex.org/I136199984, https://openalex.org/I2801851002 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Harvard University Press |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sandeep Kambhampati |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Harvard University |
| authorships[1].author.id | https://openalex.org/A5007687868 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Luca D’Alessio |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[1].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard |
| authorships[1].institutions[0].id | https://openalex.org/I107606265 |
| authorships[1].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Broad Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luca D’Alessio |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Broad Institute of MIT and Harvard |
| authorships[2].author.id | https://openalex.org/A5114577191 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Fedor Grab |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[2].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard |
| authorships[2].institutions[0].id | https://openalex.org/I107606265 |
| authorships[2].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Broad Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fedor Grab |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Broad Institute of MIT and Harvard |
| authorships[3].author.id | https://openalex.org/A5021451550 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1885-4405 |
| authorships[3].author.display_name | Stephen J. Fleming |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[3].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard |
| authorships[3].institutions[0].id | https://openalex.org/I107606265 |
| authorships[3].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Broad Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Stephen Fleming |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Broad Institute of MIT and Harvard |
| authorships[4].author.id | https://openalex.org/A5100405431 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2308-3649 |
| authorships[4].author.display_name | Fei Chen |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[4].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard |
| authorships[4].institutions[0].id | https://openalex.org/I107606265 |
| authorships[4].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Broad Institute |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fei Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Broad Institute of MIT and Harvard |
| authorships[5].author.id | https://openalex.org/A5084590772 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1829-8397 |
| authorships[5].author.display_name | Mehrtash Babadi |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I107606265 |
| authorships[5].affiliations[0].raw_affiliation_string | Broad Institute of MIT and Harvard |
| authorships[5].institutions[0].id | https://openalex.org/I107606265 |
| authorships[5].institutions[0].ror | https://ror.org/05a0ya142 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I107606265 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Broad Institute |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mehrtash Babadi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Broad Institute of MIT and Harvard |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/09/2024.11.07.622479.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TissueMosaic enables cross-sample differential analysis of spatial transcriptomics datasets through self-supervised representation learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9872000217437744 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2062195135, https://openalex.org/W1185300216, https://openalex.org/W2795079307, https://openalex.org/W2961085424, https://openalex.org/W2793058541, https://openalex.org/W1983629434, https://openalex.org/W2954163146, https://openalex.org/W2055929693, https://openalex.org/W4224009465, https://openalex.org/W4324271173 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.11.07.622479 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/09/2024.11.07.622479.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.11.07.622479 |
| primary_location.id | doi:10.1101/2024.11.07.622479 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/09/2024.11.07.622479.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.11.07.622479 |
| publication_date | 2024-11-09 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3023215041, https://openalex.org/W3120430728, https://openalex.org/W3112563877, https://openalex.org/W4229033508, https://openalex.org/W2471536144, https://openalex.org/W4389670531, https://openalex.org/W3129476455, https://openalex.org/W3023371261, https://openalex.org/W3159481202, https://openalex.org/W2046275054, https://openalex.org/W2341978434, https://openalex.org/W1977066411, https://openalex.org/W4226192560, https://openalex.org/W3108118546, https://openalex.org/W4390841990, https://openalex.org/W2890218282, https://openalex.org/W2130410032, https://openalex.org/W3211114294, https://openalex.org/W2024903234, https://openalex.org/W4385828130, https://openalex.org/W2560609797, https://openalex.org/W2624503621, https://openalex.org/W2194775991, https://openalex.org/W2099001231, https://openalex.org/W3035965352, https://openalex.org/W2889326414, https://openalex.org/W2897249806, https://openalex.org/W4386463918, https://openalex.org/W4386707745, https://openalex.org/W3106188259, https://openalex.org/W3099878876 |
| referenced_works_count | 31 |
| abstract_inverted_index.( | 57, 83 |
| abstract_inverted_index.a | 65, 96, 129 |
| abstract_inverted_index.), | 64 |
| abstract_inverted_index.). | 85 |
| abstract_inverted_index.To | 51 |
| abstract_inverted_index.We | 171 |
| abstract_inverted_index.by | 24 |
| abstract_inverted_index.in | 95, 114, 134, 176, 184 |
| abstract_inverted_index.of | 7, 18, 111, 124, 138, 195 |
| abstract_inverted_index.on | 149, 168 |
| abstract_inverted_index.to | 32, 71, 105, 198 |
| abstract_inverted_index.we | 54, 146 |
| abstract_inverted_index.and | 39, 46, 73, 165, 174 |
| abstract_inverted_index.are | 22, 48, 180 |
| abstract_inverted_index.for | 4 |
| abstract_inverted_index.how | 19, 112 |
| abstract_inverted_index.our | 16 |
| abstract_inverted_index.the | 5, 109, 121, 193 |
| abstract_inverted_index.cell | 20, 34 |
| abstract_inverted_index.from | 78 |
| abstract_inverted_index.gene | 8, 106 |
| abstract_inverted_index.high | 150 |
| abstract_inverted_index.link | 33 |
| abstract_inverted_index.maps | 88 |
| abstract_inverted_index.more | 135 |
| abstract_inverted_index.that | 140, 159, 179 |
| abstract_inverted_index.with | 36, 142, 182 |
| abstract_inverted_index.Here, | 145 |
| abstract_inverted_index.These | 190 |
| abstract_inverted_index.close | 93 |
| abstract_inverted_index.genes | 139, 173 |
| abstract_inverted_index.links | 102 |
| abstract_inverted_index.motif | 130 |
| abstract_inverted_index.ratio | 123 |
| abstract_inverted_index.still | 49 |
| abstract_inverted_index.study | 110 |
| abstract_inverted_index.their | 25, 37 |
| abstract_inverted_index.these | 103, 177 |
| abstract_inverted_index.this, | 53 |
| abstract_inverted_index.Tissue | 58 |
| abstract_inverted_index.across | 43, 62, 155, 187 |
| abstract_inverted_index.allows | 3 |
| abstract_inverted_index.covary | 141 |
| abstract_inverted_index.impact | 117 |
| abstract_inverted_index.latent | 98 |
| abstract_inverted_index.motifs | 77, 92, 104 |
| abstract_inverted_index.native | 11 |
| abstract_inverted_index.neural | 68 |
| abstract_inverted_index.space. | 99 |
| abstract_inverted_index.states | 21, 35 |
| abstract_inverted_index.tasks. | 170 |
| abstract_inverted_index.tissue | 12, 75, 91, 115, 143, 185 |
| abstract_inverted_index.within | 10 |
| abstract_inverted_index.Despite | 27 |
| abstract_inverted_index.SpAtial | 60 |
| abstract_inverted_index.Spatial | 1 |
| abstract_inverted_index.address | 52 |
| abstract_inverted_index.advance | 200 |
| abstract_inverted_index.changes | 113, 183 |
| abstract_inverted_index.further | 101 |
| abstract_inverted_index.learned | 97 |
| abstract_inverted_index.methods | 31, 167 |
| abstract_inverted_index.network | 69 |
| abstract_inverted_index.perform | 40 |
| abstract_inverted_index.samples | 45 |
| abstract_inverted_index.similar | 90 |
| abstract_inverted_index.spatial | 80, 152, 201 |
| abstract_inverted_index.thereby | 14 |
| abstract_inverted_index.through | 128 |
| abstract_inverted_index.tissues | 178 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 42, 127 |
| abstract_inverted_index.context, | 13 |
| abstract_inverted_index.datasets | 82, 154 |
| abstract_inverted_index.designed | 70 |
| abstract_inverted_index.discover | 72 |
| abstract_inverted_index.enabling | 108 |
| abstract_inverted_index.existing | 166 |
| abstract_inverted_index.external | 188 |
| abstract_inverted_index.findings | 191 |
| abstract_inverted_index.learning | 157, 197 |
| abstract_inverted_index.pathways | 175 |
| abstract_inverted_index.reliable | 136 |
| abstract_inverted_index.tissues, | 156 |
| abstract_inverted_index.together | 94 |
| abstract_inverted_index.Inference | 61 |
| abstract_inverted_index.baselines | 164 |
| abstract_inverted_index.cell-type | 162 |
| abstract_inverted_index.detection | 137 |
| abstract_inverted_index.different | 44 |
| abstract_inverted_index.function. | 118 |
| abstract_inverted_index.highlight | 172 |
| abstract_inverted_index.improving | 15 |
| abstract_inverted_index.increases | 120 |
| abstract_inverted_index.introduce | 55 |
| abstract_inverted_index.modulated | 23 |
| abstract_inverted_index.potential | 194 |
| abstract_inverted_index.represent | 74 |
| abstract_inverted_index.research. | 203 |
| abstract_inverted_index.resulting | 133 |
| abstract_inverted_index.strategy, | 132 |
| abstract_inverted_index.structure | 116, 186 |
| abstract_inverted_index.Conditions | 63 |
| abstract_inverted_index.associated | 181 |
| abstract_inverted_index.conditions | 47 |
| abstract_inverted_index.downstream | 169 |
| abstract_inverted_index.enrichment | 131 |
| abstract_inverted_index.expression | 9, 126 |
| abstract_inverted_index.outperform | 160 |
| abstract_inverted_index.resolution | 151 |
| abstract_inverted_index.structure. | 144 |
| abstract_inverted_index.underscore | 192 |
| abstract_inverted_index.MOtif-based | 59 |
| abstract_inverted_index.comparative | 41 |
| abstract_inverted_index.composition | 163 |
| abstract_inverted_index.conditions. | 189 |
| abstract_inverted_index.demonstrate | 147 |
| abstract_inverted_index.effectively | 87 |
| abstract_inverted_index.expression, | 107 |
| abstract_inverted_index.measurement | 6 |
| abstract_inverted_index.TissueMosaic | 56, 86, 100, 119, 148 |
| abstract_inverted_index.differential | 125 |
| abstract_inverted_index.multi-sample | 79 |
| abstract_inverted_index.neighborhood | 161 |
| abstract_inverted_index.structurally | 89 |
| abstract_inverted_index.advancements, | 29 |
| abstract_inverted_index.architectural | 76 |
| abstract_inverted_index.computational | 30 |
| abstract_inverted_index.convolutional | 67 |
| abstract_inverted_index.significantly | 199 |
| abstract_inverted_index.technological | 28 |
| abstract_inverted_index.understanding | 17 |
| abstract_inverted_index.transcriptomic | 81 |
| abstract_inverted_index.representations | 158 |
| abstract_inverted_index.self-supervised | 66, 196 |
| abstract_inverted_index.signal-to-noise | 122 |
| abstract_inverted_index.transcriptomics | 2, 153, 202 |
| abstract_inverted_index.underdeveloped. | 50 |
| abstract_inverted_index.microenvironment | 38 |
| abstract_inverted_index.microenvironment. | 26 |
| abstract_inverted_index.https://github.com/broadinstitute/TissueMosaic | 84 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5029943386 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I2801851002 |
| citation_normalized_percentile.value | 0.63261866 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |