TKU-PSO: An Efficient Particle Swarm Optimization Model for Top-K High-Utility Itemset Mining. Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.9781/ijimai.2024.01.002
Top-k high-utility itemset mining (top- HUIM) is a data mining procedure used to identify the most valuable patterns within transactional data. Although many algorithms are proposed for this purpose, they require substantial execution times when the search space is vast. For this reason, several meta-heuristic models have been applied in similar utility mining problems, particularly evolutionary computation (EC). These algorithms are beneficial as they can find optimal solutions without exploring the search space exhaustively. However, there are currently no evolutionary heuristics available for top-k HUIM. This paper addresses this issue by proposing an EC-based particle swarm optimization model for top-k HUIM, which we call TKU-PSO. In addition, we have developed several strategies to relieve the computational complexity throughout the algorithm. First, redundant and unnecessary candidate evaluations are avoided by utilizing explored solutions and estimating itemset utilities. Second, unpromising items are pruned during execution based on a thresholdraising concept we call minimum solution fitness. Finally, the traditional population initialization approach is revised to improve the model’s ability to find optimal solutions in huge search spaces. Our results show that TKU-PSO is faster than state-of-the-art competitors in all datasets tested. Most notably, existing algorithms could not complete certain experiments due to excessive runtimes, whereas our model discovered the correct solutions within seconds. Moreover, TKU-PSO achieved an overall accuracy of 99.8% compared to 16.5% with the current heuristic approach, while memory usage was the smallest in 2/3 of all tests.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.9781/ijimai.2024.01.002
- https://doi.org/10.9781/ijimai.2024.01.002
- OA Status
- diamond
- Cited By
- 4
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391136611
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391136611Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.9781/ijimai.2024.01.002Digital Object Identifier
- Title
-
TKU-PSO: An Efficient Particle Swarm Optimization Model for Top-K High-Utility Itemset Mining.Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-23Full publication date if available
- Authors
-
Simen Carstensen, Jerry Chun‐Wei LinList of authors in order
- Landing page
-
https://doi.org/10.9781/ijimai.2024.01.002Publisher landing page
- PDF URL
-
https://doi.org/10.9781/ijimai.2024.01.002Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.9781/ijimai.2024.01.002Direct OA link when available
- Concepts
-
Particle swarm optimization, Computer science, Swarm behaviour, Multi-swarm optimization, Data mining, Mathematical optimization, Artificial intelligence, Algorithm, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391136611 |
|---|---|
| doi | https://doi.org/10.9781/ijimai.2024.01.002 |
| ids.doi | https://doi.org/10.9781/ijimai.2024.01.002 |
| ids.openalex | https://openalex.org/W4391136611 |
| fwci | 6.11060105 |
| type | article |
| title | TKU-PSO: An Efficient Particle Swarm Optimization Model for Top-K High-Utility Itemset Mining. |
| biblio.issue | 4 |
| biblio.volume | 9 |
| biblio.last_page | 81 |
| biblio.first_page | 70 |
| topics[0].id | https://openalex.org/T10538 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Data Mining Algorithms and Applications |
| topics[1].id | https://openalex.org/T11063 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9506000280380249 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Rough Sets and Fuzzy Logic |
| topics[2].id | https://openalex.org/T11719 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.9240000247955322 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Data Quality and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C85617194 |
| concepts[0].level | 2 |
| concepts[0].score | 0.872238278388977 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[0].display_name | Particle swarm optimization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8269275426864624 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C181335050 |
| concepts[2].level | 2 |
| concepts[2].score | 0.549222469329834 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q14915018 |
| concepts[2].display_name | Swarm behaviour |
| concepts[3].id | https://openalex.org/C122357587 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4756866693496704 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6934508 |
| concepts[3].display_name | Multi-swarm optimization |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3725903630256653 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35711634159088135 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.2959461808204651 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.24990087747573853 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.06483116745948792 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[0].score | 0.872238278388977 |
| keywords[0].display_name | Particle swarm optimization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8269275426864624 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/swarm-behaviour |
| keywords[2].score | 0.549222469329834 |
| keywords[2].display_name | Swarm behaviour |
| keywords[3].id | https://openalex.org/keywords/multi-swarm-optimization |
| keywords[3].score | 0.4756866693496704 |
| keywords[3].display_name | Multi-swarm optimization |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.3725903630256653 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.35711634159088135 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.2959461808204651 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.24990087747573853 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.06483116745948792 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.9781/ijimai.2024.01.002 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2738898797 |
| locations[0].source.issn | 1989-1660 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1989-1660 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310321767 |
| locations[0].source.host_organization_name | International University of La Rioja |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321767 |
| locations[0].source.host_organization_lineage_names | International University of La Rioja |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://doi.org/10.9781/ijimai.2024.01.002 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.9781/ijimai.2024.01.002 |
| locations[1].id | pmh:oai:reunir.unir.net:123456789/16003 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400329 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Re-Unir (International University of La Rioja) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://reunir.unir.net/handle/123456789/16003 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5093769562 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Simen Carstensen |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4432739 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Bergen, Bergen, (Norway) |
| authorships[0].institutions[0].id | https://openalex.org/I4432739 |
| authorships[0].institutions[0].ror | https://ror.org/03zga2b32 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4432739 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | University of Bergen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Simen Carstensen |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | University of Bergen, Bergen, (Norway) |
| authorships[1].author.id | https://openalex.org/A5000640263 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8768-9709 |
| authorships[1].author.display_name | Jerry Chun‐Wei Lin |
| authorships[1].countries | NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I179863766 |
| authorships[1].affiliations[0].raw_affiliation_string | Western Norway University of Applied Sciences, Bergen, (Norway) |
| authorships[1].institutions[0].id | https://openalex.org/I179863766 |
| authorships[1].institutions[0].ror | https://ror.org/05phns765 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I179863766 |
| authorships[1].institutions[0].country_code | NO |
| authorships[1].institutions[0].display_name | Western Norway University of Applied Sciences |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jerry Chun-Wei Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Western Norway University of Applied Sciences, Bergen, (Norway) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.9781/ijimai.2024.01.002 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TKU-PSO: An Efficient Particle Swarm Optimization Model for Top-K High-Utility Itemset Mining. |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10538 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Data Mining Algorithms and Applications |
| related_works | https://openalex.org/W2006324351, https://openalex.org/W2965421953, https://openalex.org/W2349895019, https://openalex.org/W2950423922, https://openalex.org/W2116074880, https://openalex.org/W2121780490, https://openalex.org/W2070977815, https://openalex.org/W2137136732, https://openalex.org/W2132113279, https://openalex.org/W2113224065 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.9781/ijimai.2024.01.002 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2738898797 |
| best_oa_location.source.issn | 1989-1660 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1989-1660 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310321767 |
| best_oa_location.source.host_organization_name | International University of La Rioja |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321767 |
| best_oa_location.source.host_organization_lineage_names | International University of La Rioja |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://doi.org/10.9781/ijimai.2024.01.002 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.9781/ijimai.2024.01.002 |
| primary_location.id | doi:10.9781/ijimai.2024.01.002 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2738898797 |
| primary_location.source.issn | 1989-1660 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1989-1660 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310321767 |
| primary_location.source.host_organization_name | International University of La Rioja |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321767 |
| primary_location.source.host_organization_lineage_names | International University of La Rioja |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://doi.org/10.9781/ijimai.2024.01.002 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Interactive Multimedia and Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.9781/ijimai.2024.01.002 |
| publication_date | 2024-01-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2998574808, https://openalex.org/W1968259950, https://openalex.org/W2883724305, https://openalex.org/W2980978612, https://openalex.org/W4283786478, https://openalex.org/W6683892163, https://openalex.org/W2049824131, https://openalex.org/W6682642761, https://openalex.org/W2509363971, https://openalex.org/W3118554167, https://openalex.org/W3196800873, https://openalex.org/W2125352627, https://openalex.org/W2151028259, https://openalex.org/W2041650550, https://openalex.org/W2161637667, https://openalex.org/W2099398039, https://openalex.org/W2094830079, https://openalex.org/W4288400169, https://openalex.org/W2328335709, https://openalex.org/W2513061279, https://openalex.org/W1986572138, https://openalex.org/W2183819092, https://openalex.org/W2337669931, https://openalex.org/W2898555689, https://openalex.org/W2791612693, https://openalex.org/W2893454557, https://openalex.org/W3058140611, https://openalex.org/W4200223652, https://openalex.org/W3156031410, https://openalex.org/W3188852713, https://openalex.org/W2296164026, https://openalex.org/W2794370109, https://openalex.org/W4281778262, https://openalex.org/W2994726635, https://openalex.org/W2580448867, https://openalex.org/W2808592064, https://openalex.org/W3178292667, https://openalex.org/W3203005438, https://openalex.org/W1577352482, https://openalex.org/W2507635762, https://openalex.org/W4253766629, https://openalex.org/W2543580944, https://openalex.org/W4225163296, https://openalex.org/W2084866398, https://openalex.org/W2162214498 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 7, 145 |
| abstract_inverted_index.In | 105 |
| abstract_inverted_index.an | 92, 213 |
| abstract_inverted_index.as | 62 |
| abstract_inverted_index.by | 90, 128 |
| abstract_inverted_index.in | 49, 170, 184, 232 |
| abstract_inverted_index.is | 6, 38, 159, 179 |
| abstract_inverted_index.no | 78 |
| abstract_inverted_index.of | 216, 234 |
| abstract_inverted_index.on | 144 |
| abstract_inverted_index.to | 12, 112, 161, 166, 198, 219 |
| abstract_inverted_index.we | 102, 107, 148 |
| abstract_inverted_index.2/3 | 233 |
| abstract_inverted_index.For | 40 |
| abstract_inverted_index.Our | 174 |
| abstract_inverted_index.all | 185, 235 |
| abstract_inverted_index.and | 122, 132 |
| abstract_inverted_index.are | 24, 60, 76, 126, 139 |
| abstract_inverted_index.can | 64 |
| abstract_inverted_index.due | 197 |
| abstract_inverted_index.for | 26, 82, 98 |
| abstract_inverted_index.not | 193 |
| abstract_inverted_index.our | 202 |
| abstract_inverted_index.the | 14, 35, 70, 114, 118, 154, 163, 205, 222, 230 |
| abstract_inverted_index.was | 229 |
| abstract_inverted_index.Most | 188 |
| abstract_inverted_index.This | 85 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.call | 103, 149 |
| abstract_inverted_index.data | 8 |
| abstract_inverted_index.find | 65, 167 |
| abstract_inverted_index.have | 46, 108 |
| abstract_inverted_index.huge | 171 |
| abstract_inverted_index.many | 22 |
| abstract_inverted_index.most | 15 |
| abstract_inverted_index.show | 176 |
| abstract_inverted_index.than | 181 |
| abstract_inverted_index.that | 177 |
| abstract_inverted_index.they | 29, 63 |
| abstract_inverted_index.this | 27, 41, 88 |
| abstract_inverted_index.used | 11 |
| abstract_inverted_index.when | 34 |
| abstract_inverted_index.with | 221 |
| abstract_inverted_index.(EC). | 57 |
| abstract_inverted_index.(top- | 4 |
| abstract_inverted_index.16.5% | 220 |
| abstract_inverted_index.99.8% | 217 |
| abstract_inverted_index.HUIM) | 5 |
| abstract_inverted_index.HUIM, | 100 |
| abstract_inverted_index.HUIM. | 84 |
| abstract_inverted_index.These | 58 |
| abstract_inverted_index.Top-k | 0 |
| abstract_inverted_index.based | 143 |
| abstract_inverted_index.could | 192 |
| abstract_inverted_index.data. | 20 |
| abstract_inverted_index.issue | 89 |
| abstract_inverted_index.items | 138 |
| abstract_inverted_index.model | 97, 203 |
| abstract_inverted_index.paper | 86 |
| abstract_inverted_index.space | 37, 72 |
| abstract_inverted_index.swarm | 95 |
| abstract_inverted_index.there | 75 |
| abstract_inverted_index.times | 33 |
| abstract_inverted_index.top-k | 83, 99 |
| abstract_inverted_index.usage | 228 |
| abstract_inverted_index.vast. | 39 |
| abstract_inverted_index.which | 101 |
| abstract_inverted_index.while | 226 |
| abstract_inverted_index.First, | 120 |
| abstract_inverted_index.during | 141 |
| abstract_inverted_index.faster | 180 |
| abstract_inverted_index.memory | 227 |
| abstract_inverted_index.mining | 3, 9, 52 |
| abstract_inverted_index.models | 45 |
| abstract_inverted_index.pruned | 140 |
| abstract_inverted_index.search | 36, 71, 172 |
| abstract_inverted_index.tests. | 236 |
| abstract_inverted_index.within | 18, 208 |
| abstract_inverted_index.Second, | 136 |
| abstract_inverted_index.TKU-PSO | 178, 211 |
| abstract_inverted_index.ability | 165 |
| abstract_inverted_index.applied | 48 |
| abstract_inverted_index.avoided | 127 |
| abstract_inverted_index.certain | 195 |
| abstract_inverted_index.concept | 147 |
| abstract_inverted_index.correct | 206 |
| abstract_inverted_index.current | 223 |
| abstract_inverted_index.improve | 162 |
| abstract_inverted_index.itemset | 2, 134 |
| abstract_inverted_index.minimum | 150 |
| abstract_inverted_index.optimal | 66, 168 |
| abstract_inverted_index.overall | 214 |
| abstract_inverted_index.reason, | 42 |
| abstract_inverted_index.relieve | 113 |
| abstract_inverted_index.require | 30 |
| abstract_inverted_index.results | 175 |
| abstract_inverted_index.revised | 160 |
| abstract_inverted_index.several | 43, 110 |
| abstract_inverted_index.similar | 50 |
| abstract_inverted_index.spaces. | 173 |
| abstract_inverted_index.tested. | 187 |
| abstract_inverted_index.utility | 51 |
| abstract_inverted_index.whereas | 201 |
| abstract_inverted_index.without | 68 |
| abstract_inverted_index.Although | 21 |
| abstract_inverted_index.EC-based | 93 |
| abstract_inverted_index.Finally, | 153 |
| abstract_inverted_index.However, | 74 |
| abstract_inverted_index.TKU-PSO. | 104 |
| abstract_inverted_index.accuracy | 215 |
| abstract_inverted_index.achieved | 212 |
| abstract_inverted_index.approach | 158 |
| abstract_inverted_index.compared | 218 |
| abstract_inverted_index.complete | 194 |
| abstract_inverted_index.datasets | 186 |
| abstract_inverted_index.existing | 190 |
| abstract_inverted_index.explored | 130 |
| abstract_inverted_index.fitness. | 152 |
| abstract_inverted_index.identify | 13 |
| abstract_inverted_index.notably, | 189 |
| abstract_inverted_index.particle | 94 |
| abstract_inverted_index.patterns | 17 |
| abstract_inverted_index.proposed | 25 |
| abstract_inverted_index.purpose, | 28 |
| abstract_inverted_index.seconds. | 209 |
| abstract_inverted_index.smallest | 231 |
| abstract_inverted_index.solution | 151 |
| abstract_inverted_index.valuable | 16 |
| abstract_inverted_index.Moreover, | 210 |
| abstract_inverted_index.addition, | 106 |
| abstract_inverted_index.addresses | 87 |
| abstract_inverted_index.approach, | 225 |
| abstract_inverted_index.available | 81 |
| abstract_inverted_index.candidate | 124 |
| abstract_inverted_index.currently | 77 |
| abstract_inverted_index.developed | 109 |
| abstract_inverted_index.excessive | 199 |
| abstract_inverted_index.execution | 32, 142 |
| abstract_inverted_index.exploring | 69 |
| abstract_inverted_index.heuristic | 224 |
| abstract_inverted_index.model’s | 164 |
| abstract_inverted_index.problems, | 53 |
| abstract_inverted_index.procedure | 10 |
| abstract_inverted_index.proposing | 91 |
| abstract_inverted_index.redundant | 121 |
| abstract_inverted_index.runtimes, | 200 |
| abstract_inverted_index.solutions | 67, 131, 169, 207 |
| abstract_inverted_index.utilizing | 129 |
| abstract_inverted_index.algorithm. | 119 |
| abstract_inverted_index.algorithms | 23, 59, 191 |
| abstract_inverted_index.beneficial | 61 |
| abstract_inverted_index.complexity | 116 |
| abstract_inverted_index.discovered | 204 |
| abstract_inverted_index.estimating | 133 |
| abstract_inverted_index.heuristics | 80 |
| abstract_inverted_index.population | 156 |
| abstract_inverted_index.strategies | 111 |
| abstract_inverted_index.throughout | 117 |
| abstract_inverted_index.utilities. | 135 |
| abstract_inverted_index.competitors | 183 |
| abstract_inverted_index.computation | 56 |
| abstract_inverted_index.evaluations | 125 |
| abstract_inverted_index.experiments | 196 |
| abstract_inverted_index.substantial | 31 |
| abstract_inverted_index.traditional | 155 |
| abstract_inverted_index.unnecessary | 123 |
| abstract_inverted_index.unpromising | 137 |
| abstract_inverted_index.evolutionary | 55, 79 |
| abstract_inverted_index.high-utility | 1 |
| abstract_inverted_index.optimization | 96 |
| abstract_inverted_index.particularly | 54 |
| abstract_inverted_index.computational | 115 |
| abstract_inverted_index.exhaustively. | 73 |
| abstract_inverted_index.transactional | 19 |
| abstract_inverted_index.initialization | 157 |
| abstract_inverted_index.meta-heuristic | 44 |
| abstract_inverted_index.state-of-the-art | 182 |
| abstract_inverted_index.thresholdraising | 146 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5093769562 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I4432739 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.93605115 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |