TLC-XML: Transformer with Label Correlation for Extreme Multi-label Text Classification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s11063-024-11460-z
Extreme multi-label text classification (XMTC) annotates related labels for unknown text from large-scale label sets. Transformer-based methods have become the dominant approach for solving the XMTC task due to their effective text representation capabilities. However, the existing Transformer-based methods fail to effectively exploit the correlation between labels in the XMTC task. To address this shortcoming, we propose a novel model called TLC-XML, i.e., a Transformer with label correlation for extreme multi-label text classification. TLC-XML comprises three modules: Partition, Matcher and Ranker. In the Partition module, we exploit the semantic and co-occurrence information of labels to construct the label correlation graph, and further partition the strongly correlated labels into the same cluster. In the Matcher module, we propose cluster correlation learning, which uses the graph convolutional network (GCN) to extract the correlation between clusters. We then introduce these valuable correlations into the classifier to match related clusters. In the Ranker module, we propose label interaction learning, which aggregates the raw label prediction with the information of the neighboring labels. The experimental results on benchmark datasets show that TLC-XML significantly outperforms state-of-the-art XMTC methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11063-024-11460-z
- https://link.springer.com/content/pdf/10.1007/s11063-024-11460-z.pdf
- OA Status
- hybrid
- Cited By
- 9
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391723614
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391723614Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11063-024-11460-zDigital Object Identifier
- Title
-
TLC-XML: Transformer with Label Correlation for Extreme Multi-label Text ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-10Full publication date if available
- Authors
-
Fei Zhao, Qing Ai, Xiangna Li, Wenhui Wang, Qingyun Gao, Yichun LiuList of authors in order
- Landing page
-
https://doi.org/10.1007/s11063-024-11460-zPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11063-024-11460-z.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11063-024-11460-z.pdfDirect OA link when available
- Concepts
-
Computer science, Exploit, XML, Artificial intelligence, Correlation, Pattern recognition (psychology), Classifier (UML), Transformer, Data mining, Machine learning, Mathematics, Quantum mechanics, Physics, Computer security, Geometry, Voltage, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 4Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391723614 |
|---|---|
| doi | https://doi.org/10.1007/s11063-024-11460-z |
| ids.doi | https://doi.org/10.1007/s11063-024-11460-z |
| ids.openalex | https://openalex.org/W4391723614 |
| fwci | 5.74900694 |
| type | article |
| title | TLC-XML: Transformer with Label Correlation for Extreme Multi-label Text Classification |
| awards[0].id | https://openalex.org/G5384471154 |
| awards[0].funder_id | https://openalex.org/F4320323086 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2020-MS-281 |
| awards[0].funder_display_name | Natural Science Foundation of Liaoning Province |
| biblio.issue | 1 |
| biblio.volume | 56 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11550 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Text and Document Classification Technologies |
| topics[1].id | https://openalex.org/T10664 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Sentiment Analysis and Opinion Mining |
| topics[2].id | https://openalex.org/T13083 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.993399977684021 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Text Analysis Techniques |
| funders[0].id | https://openalex.org/F4320323086 |
| funders[0].ror | |
| funders[0].display_name | Natural Science Foundation of Liaoning Province |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7678700685501099 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C165696696 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6295973658561707 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[1].display_name | Exploit |
| concepts[2].id | https://openalex.org/C8797682 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5923013687133789 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2115 |
| concepts[2].display_name | XML |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5435590147972107 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C117220453 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5305248498916626 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5172842 |
| concepts[4].display_name | Correlation |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5197712779045105 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C95623464 |
| concepts[6].level | 2 |
| concepts[6].score | 0.484867662191391 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[6].display_name | Classifier (UML) |
| concepts[7].id | https://openalex.org/C66322947 |
| concepts[7].level | 3 |
| concepts[7].score | 0.41872408986091614 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[7].display_name | Transformer |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.36560046672821045 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32937973737716675 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.11591553688049316 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C38652104 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[13].display_name | Computer security |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C165801399 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[15].display_name | Voltage |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7678700685501099 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/exploit |
| keywords[1].score | 0.6295973658561707 |
| keywords[1].display_name | Exploit |
| keywords[2].id | https://openalex.org/keywords/xml |
| keywords[2].score | 0.5923013687133789 |
| keywords[2].display_name | XML |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5435590147972107 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/correlation |
| keywords[4].score | 0.5305248498916626 |
| keywords[4].display_name | Correlation |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5197712779045105 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/classifier |
| keywords[6].score | 0.484867662191391 |
| keywords[6].display_name | Classifier (UML) |
| keywords[7].id | https://openalex.org/keywords/transformer |
| keywords[7].score | 0.41872408986091614 |
| keywords[7].display_name | Transformer |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.36560046672821045 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.32937973737716675 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.11591553688049316 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1007/s11063-024-11460-z |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S140962798 |
| locations[0].source.issn | 1370-4621, 1573-773X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1370-4621 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Neural Processing Letters |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11063-024-11460-z.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Neural Processing Letters |
| locations[0].landing_page_url | https://doi.org/10.1007/s11063-024-11460-z |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5088080667 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0936-4447 |
| authorships[0].author.display_name | Fei Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114117164 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China |
| authorships[0].institutions[0].id | https://openalex.org/I114117164 |
| authorships[0].institutions[0].ror | https://ror.org/03grx7119 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114117164 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Science and Technology Liaoning |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fei Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China |
| authorships[1].author.id | https://openalex.org/A5032765483 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8081-6805 |
| authorships[1].author.display_name | Qing Ai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114117164 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China |
| authorships[1].institutions[0].id | https://openalex.org/I114117164 |
| authorships[1].institutions[0].ror | https://ror.org/03grx7119 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114117164 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Science and Technology Liaoning |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qing Ai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China |
| authorships[2].author.id | https://openalex.org/A5072327118 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiangna Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I17442442 |
| authorships[2].affiliations[0].raw_affiliation_string | State Grid Information and Telecommunication Group Company Ltd., State Grid Corporation of China, Beijing, 100053, China |
| authorships[2].institutions[0].id | https://openalex.org/I17442442 |
| authorships[2].institutions[0].ror | https://ror.org/05twwhs70 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I17442442 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Grid Corporation of China (China) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiangna Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Grid Information and Telecommunication Group Company Ltd., State Grid Corporation of China, Beijing, 100053, China |
| authorships[3].author.id | https://openalex.org/A5100370075 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4251-0653 |
| authorships[3].author.display_name | Wenhui Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Synchrotron Radiation Facility, Chinese Academy of Sciences, Beijing, 100049, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenhui Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Beijing Synchrotron Radiation Facility, Chinese Academy of Sciences, Beijing, 100049, China |
| authorships[4].author.id | https://openalex.org/A5064441410 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6285-4015 |
| authorships[4].author.display_name | Qingyun Gao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I114117164 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China |
| authorships[4].institutions[0].id | https://openalex.org/I114117164 |
| authorships[4].institutions[0].ror | https://ror.org/03grx7119 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I114117164 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | University of Science and Technology Liaoning |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qingyun Gao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China |
| authorships[5].author.id | https://openalex.org/A5100658559 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8628-6112 |
| authorships[5].author.display_name | Yichun Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I114117164 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China |
| authorships[5].institutions[0].id | https://openalex.org/I114117164 |
| authorships[5].institutions[0].ror | https://ror.org/03grx7119 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I114117164 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | University of Science and Technology Liaoning |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yichun Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, 114051, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11063-024-11460-z.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TLC-XML: Transformer with Label Correlation for Extreme Multi-label Text Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11550 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Text and Document Classification Technologies |
| related_works | https://openalex.org/W17155033, https://openalex.org/W3207760230, https://openalex.org/W1496222301, https://openalex.org/W4312814274, https://openalex.org/W1590307681, https://openalex.org/W2536018345, https://openalex.org/W4285370786, https://openalex.org/W2296488620, https://openalex.org/W2358353312, https://openalex.org/W2353836703 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s11063-024-11460-z |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S140962798 |
| best_oa_location.source.issn | 1370-4621, 1573-773X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1370-4621 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Neural Processing Letters |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11063-024-11460-z.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Neural Processing Letters |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11063-024-11460-z |
| primary_location.id | doi:10.1007/s11063-024-11460-z |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S140962798 |
| primary_location.source.issn | 1370-4621, 1573-773X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1370-4621 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Neural Processing Letters |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11063-024-11460-z.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Neural Processing Letters |
| primary_location.landing_page_url | https://doi.org/10.1007/s11063-024-11460-z |
| publication_date | 2024-02-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W1991418309, https://openalex.org/W4281657308, https://openalex.org/W2906963924, https://openalex.org/W6702248584, https://openalex.org/W3037422790, https://openalex.org/W3177232285, https://openalex.org/W3080994088, https://openalex.org/W4205902690, https://openalex.org/W2743021690, https://openalex.org/W2520348554, https://openalex.org/W4306750934, https://openalex.org/W2744136723, https://openalex.org/W2788125153, https://openalex.org/W3080802002, https://openalex.org/W2739996966, https://openalex.org/W2047940964, https://openalex.org/W2932399282, https://openalex.org/W3120220640, https://openalex.org/W2998486497, https://openalex.org/W4308112365, https://openalex.org/W4200055642, https://openalex.org/W3035665101, https://openalex.org/W2194775991, https://openalex.org/W1781770377, https://openalex.org/W2061873838, https://openalex.org/W2068074736, https://openalex.org/W4224307896 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 58, 64 |
| abstract_inverted_index.In | 82, 112, 147 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.We | 134 |
| abstract_inverted_index.in | 48 |
| abstract_inverted_index.of | 93, 165 |
| abstract_inverted_index.on | 172 |
| abstract_inverted_index.to | 29, 41, 95, 128, 143 |
| abstract_inverted_index.we | 56, 86, 116, 151 |
| abstract_inverted_index.The | 169 |
| abstract_inverted_index.and | 80, 90, 101 |
| abstract_inverted_index.due | 28 |
| abstract_inverted_index.for | 9, 23, 69 |
| abstract_inverted_index.raw | 159 |
| abstract_inverted_index.the | 20, 25, 36, 44, 49, 83, 88, 97, 104, 109, 113, 123, 130, 141, 148, 158, 163, 166 |
| abstract_inverted_index.XMTC | 26, 50, 181 |
| abstract_inverted_index.fail | 40 |
| abstract_inverted_index.from | 12 |
| abstract_inverted_index.have | 18 |
| abstract_inverted_index.into | 108, 140 |
| abstract_inverted_index.same | 110 |
| abstract_inverted_index.show | 175 |
| abstract_inverted_index.task | 27 |
| abstract_inverted_index.text | 3, 11, 32, 72 |
| abstract_inverted_index.that | 176 |
| abstract_inverted_index.then | 135 |
| abstract_inverted_index.this | 54 |
| abstract_inverted_index.uses | 122 |
| abstract_inverted_index.with | 66, 162 |
| abstract_inverted_index.(GCN) | 127 |
| abstract_inverted_index.graph | 124 |
| abstract_inverted_index.i.e., | 63 |
| abstract_inverted_index.label | 14, 67, 98, 153, 160 |
| abstract_inverted_index.match | 144 |
| abstract_inverted_index.model | 60 |
| abstract_inverted_index.novel | 59 |
| abstract_inverted_index.sets. | 15 |
| abstract_inverted_index.task. | 51 |
| abstract_inverted_index.their | 30 |
| abstract_inverted_index.these | 137 |
| abstract_inverted_index.three | 76 |
| abstract_inverted_index.which | 121, 156 |
| abstract_inverted_index.(XMTC) | 5 |
| abstract_inverted_index.Ranker | 149 |
| abstract_inverted_index.become | 19 |
| abstract_inverted_index.called | 61 |
| abstract_inverted_index.graph, | 100 |
| abstract_inverted_index.labels | 8, 47, 94, 107 |
| abstract_inverted_index.Extreme | 1 |
| abstract_inverted_index.Matcher | 79, 114 |
| abstract_inverted_index.Ranker. | 81 |
| abstract_inverted_index.TLC-XML | 74, 177 |
| abstract_inverted_index.address | 53 |
| abstract_inverted_index.between | 46, 132 |
| abstract_inverted_index.cluster | 118 |
| abstract_inverted_index.exploit | 43, 87 |
| abstract_inverted_index.extract | 129 |
| abstract_inverted_index.extreme | 70 |
| abstract_inverted_index.further | 102 |
| abstract_inverted_index.labels. | 168 |
| abstract_inverted_index.methods | 17, 39 |
| abstract_inverted_index.module, | 85, 115, 150 |
| abstract_inverted_index.network | 126 |
| abstract_inverted_index.propose | 57, 117, 152 |
| abstract_inverted_index.related | 7, 145 |
| abstract_inverted_index.results | 171 |
| abstract_inverted_index.solving | 24 |
| abstract_inverted_index.unknown | 10 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 35 |
| abstract_inverted_index.TLC-XML, | 62 |
| abstract_inverted_index.approach | 22 |
| abstract_inverted_index.cluster. | 111 |
| abstract_inverted_index.datasets | 174 |
| abstract_inverted_index.dominant | 21 |
| abstract_inverted_index.existing | 37 |
| abstract_inverted_index.methods. | 182 |
| abstract_inverted_index.modules: | 77 |
| abstract_inverted_index.semantic | 89 |
| abstract_inverted_index.strongly | 105 |
| abstract_inverted_index.valuable | 138 |
| abstract_inverted_index.Partition | 84 |
| abstract_inverted_index.annotates | 6 |
| abstract_inverted_index.benchmark | 173 |
| abstract_inverted_index.clusters. | 133, 146 |
| abstract_inverted_index.comprises | 75 |
| abstract_inverted_index.construct | 96 |
| abstract_inverted_index.effective | 31 |
| abstract_inverted_index.introduce | 136 |
| abstract_inverted_index.learning, | 120, 155 |
| abstract_inverted_index.partition | 103 |
| abstract_inverted_index.Partition, | 78 |
| abstract_inverted_index.aggregates | 157 |
| abstract_inverted_index.classifier | 142 |
| abstract_inverted_index.correlated | 106 |
| abstract_inverted_index.prediction | 161 |
| abstract_inverted_index.Transformer | 65 |
| abstract_inverted_index.correlation | 45, 68, 99, 119, 131 |
| abstract_inverted_index.effectively | 42 |
| abstract_inverted_index.information | 92, 164 |
| abstract_inverted_index.interaction | 154 |
| abstract_inverted_index.large-scale | 13 |
| abstract_inverted_index.multi-label | 2, 71 |
| abstract_inverted_index.neighboring | 167 |
| abstract_inverted_index.outperforms | 179 |
| abstract_inverted_index.correlations | 139 |
| abstract_inverted_index.experimental | 170 |
| abstract_inverted_index.shortcoming, | 55 |
| abstract_inverted_index.capabilities. | 34 |
| abstract_inverted_index.co-occurrence | 91 |
| abstract_inverted_index.convolutional | 125 |
| abstract_inverted_index.significantly | 178 |
| abstract_inverted_index.classification | 4 |
| abstract_inverted_index.representation | 33 |
| abstract_inverted_index.classification. | 73 |
| abstract_inverted_index.state-of-the-art | 180 |
| abstract_inverted_index.Transformer-based | 16, 38 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.94366401 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |