To Cluster or Not to Cluster: The Impact of Clustering on the Performance of Aspect-Based Collaborative Filtering Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/access.2023.3270260
Collaborative filtering (CF) is one of the most widely utilised approaches in recommendation techniques. It suggests items to users based on the ratings of other users who share their preferences. Thus, one of the aims of CF is to find reliable neighbours. Typically, CF produces a sparse user-item rating matrix, when relying only on the ratings to identify the precise neighbours, resulting in poor performance. User reviews can be essential in overcoming those situations because of the diverse elements available in reviews. The most popular element is aspects, which can provide a fine-grained analysis of users’ behaviours, thus improving personalised recommendations. However, increasing the number of aspects also results in sparsity, therefore may deteriorate the recommendation performance. As a result, clustering of aspects may lessen this sparsity, but it is yet unclear how much this would affect the performance of CF systems. This study proposes a CF approach based on aspect clustering that addresses the above issue in terms of rating prediction. The approach aims to reduce the sparseness in the multi-criteria rating matrix by grouping aspects into clusters based on their semantic similarity, which will be less expensive and require less memory to discover the neighbourhood set. Our approach extracts aspects and represents them using Google’s pre-trained Word2vec model. Then, aspects are organised into clusters using the K-means clustering algorithm. Multi-dimensional Euclidean distance is used as a similarity measure for finding the appropriate neighbours and predicted ratings of unseen items are then made using the NN algorithm. This study also identifies the number of aspects that significantly impacts CF performance. Experiments are carried out using a real large-scale dataset: the Amazon movie dataset. Evaluation is also performed by comparing CF performance of the proposed approach with three different baseline approaches. Results show that the proposed approach improves CF performance compared to other approaches in terms of three predictive accuracy metrics.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2023.3270260
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10107993.pdf
- OA Status
- gold
- Cited By
- 11
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367031915
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367031915Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2023.3270260Digital Object Identifier
- Title
-
To Cluster or Not to Cluster: The Impact of Clustering on the Performance of Aspect-Based Collaborative FilteringWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Sumaia Mohammed Al-Ghuribi, Shahrul Azman Mohd Noah, Mawal A. Mohammed, Sultan Noman Qasem, Belal Abdullah Hezam MurshedList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2023.3270260Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10107993.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10107993.pdfDirect OA link when available
- Concepts
-
Collaborative filtering, Computer science, Cluster analysis, Recommender system, Similarity (geometry), Data mining, Word2vec, Set (abstract data type), Euclidean distance, Information retrieval, Machine learning, Artificial intelligence, Embedding, Image (mathematics), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 6, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367031915 |
|---|---|
| doi | https://doi.org/10.1109/access.2023.3270260 |
| ids.doi | https://doi.org/10.1109/access.2023.3270260 |
| ids.openalex | https://openalex.org/W4367031915 |
| fwci | 6.80336389 |
| type | article |
| title | To Cluster or Not to Cluster: The Impact of Clustering on the Performance of Aspect-Based Collaborative Filtering |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 41994 |
| biblio.first_page | 41979 |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T10609 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Digital Marketing and Social Media |
| topics[2].id | https://openalex.org/T10664 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9602000117301941 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Sentiment Analysis and Opinion Mining |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C21569690 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8111116886138916 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q94702 |
| concepts[0].display_name | Collaborative filtering |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7738466858863831 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7648022770881653 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C557471498 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5953367948532104 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q554950 |
| concepts[3].display_name | Recommender system |
| concepts[4].id | https://openalex.org/C103278499 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5675471425056458 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[4].display_name | Similarity (geometry) |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5299758911132812 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C2776461190 |
| concepts[6].level | 3 |
| concepts[6].score | 0.49904656410217285 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q22673982 |
| concepts[6].display_name | Word2vec |
| concepts[7].id | https://openalex.org/C177264268 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4937034547328949 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[7].display_name | Set (abstract data type) |
| concepts[8].id | https://openalex.org/C120174047 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4598781168460846 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q847073 |
| concepts[8].display_name | Euclidean distance |
| concepts[9].id | https://openalex.org/C23123220 |
| concepts[9].level | 1 |
| concepts[9].score | 0.40728759765625 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[9].display_name | Information retrieval |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4060065746307373 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4047227203845978 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C41608201 |
| concepts[12].level | 2 |
| concepts[12].score | 0.09076163172721863 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[12].display_name | Embedding |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.07695040106773376 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/collaborative-filtering |
| keywords[0].score | 0.8111116886138916 |
| keywords[0].display_name | Collaborative filtering |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7738466858863831 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.7648022770881653 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/recommender-system |
| keywords[3].score | 0.5953367948532104 |
| keywords[3].display_name | Recommender system |
| keywords[4].id | https://openalex.org/keywords/similarity |
| keywords[4].score | 0.5675471425056458 |
| keywords[4].display_name | Similarity (geometry) |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.5299758911132812 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/word2vec |
| keywords[6].score | 0.49904656410217285 |
| keywords[6].display_name | Word2vec |
| keywords[7].id | https://openalex.org/keywords/set |
| keywords[7].score | 0.4937034547328949 |
| keywords[7].display_name | Set (abstract data type) |
| keywords[8].id | https://openalex.org/keywords/euclidean-distance |
| keywords[8].score | 0.4598781168460846 |
| keywords[8].display_name | Euclidean distance |
| keywords[9].id | https://openalex.org/keywords/information-retrieval |
| keywords[9].score | 0.40728759765625 |
| keywords[9].display_name | Information retrieval |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4060065746307373 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.4047227203845978 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/embedding |
| keywords[12].score | 0.09076163172721863 |
| keywords[12].display_name | Embedding |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.07695040106773376 |
| keywords[13].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1109/access.2023.3270260 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10107993.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2023.3270260 |
| locations[1].id | pmh:oai:doaj.org/article:39e0bd2fe74146869ac957940121644b |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 11, Pp 41979-41994 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/39e0bd2fe74146869ac957940121644b |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5033460973 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9714-9677 |
| authorships[0].author.display_name | Sumaia Mohammed Al-Ghuribi |
| authorships[0].countries | MY, YE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36197038 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Faculty of Applied Sciences, Taiz University, Taiz, Yemen |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I885383172 |
| authorships[0].affiliations[1].raw_affiliation_string | Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I885383172 |
| authorships[0].institutions[0].ror | https://ror.org/00bw8d226 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I885383172 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | National University of Malaysia |
| authorships[0].institutions[1].id | https://openalex.org/I36197038 |
| authorships[0].institutions[1].ror | https://ror.org/03jwcxq96 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I36197038 |
| authorships[0].institutions[1].country_code | YE |
| authorships[0].institutions[1].display_name | Taiz University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sumaia Mohammed Al-Ghuribi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Faculty of Applied Sciences, Taiz University, Taiz, Yemen, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Malaysia |
| authorships[1].author.id | https://openalex.org/A5084358405 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7683-4309 |
| authorships[1].author.display_name | Shahrul Azman Mohd Noah |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I885383172 |
| authorships[1].affiliations[0].raw_affiliation_string | Center for Artificial Intelligent Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I885383172 |
| authorships[1].institutions[0].ror | https://ror.org/00bw8d226 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I885383172 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | National University of Malaysia |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shahrul Azman Mohd Noah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Artificial Intelligent Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia |
| authorships[2].author.id | https://openalex.org/A5109807183 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mawal A. Mohammed |
| authorships[2].countries | SA |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I142608572 |
| authorships[2].affiliations[0].raw_affiliation_string | Software Engineering Department, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia |
| authorships[2].institutions[0].id | https://openalex.org/I142608572 |
| authorships[2].institutions[0].ror | https://ror.org/04jt46d36 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I142608572 |
| authorships[2].institutions[0].country_code | SA |
| authorships[2].institutions[0].display_name | Prince Sattam Bin Abdulaziz University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mawal A. Mohammed |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Software Engineering Department, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia |
| authorships[3].author.id | https://openalex.org/A5012596219 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6575-161X |
| authorships[3].author.display_name | Sultan Noman Qasem |
| authorships[3].countries | SA, YE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I36197038 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science, Faculty of Applied Sciences, Taiz University, Taiz, Yemen |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I240666556 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Computer Science, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I240666556 |
| authorships[3].institutions[0].ror | https://ror.org/05gxjyb39 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I240666556 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Imam Mohammad ibn Saud Islamic University |
| authorships[3].institutions[1].id | https://openalex.org/I36197038 |
| authorships[3].institutions[1].ror | https://ror.org/03jwcxq96 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I36197038 |
| authorships[3].institutions[1].country_code | YE |
| authorships[3].institutions[1].display_name | Taiz University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sultan Noman Qasem |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia, Department of Computer Science, Faculty of Applied Sciences, Taiz University, Taiz, Yemen |
| authorships[4].author.id | https://openalex.org/A5031125465 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2187-5044 |
| authorships[4].author.display_name | Belal Abdullah Hezam Murshed |
| authorships[4].countries | IN, YE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204743663 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Studies in Computer Science, Mysore University, Mysore, Karnataka, India |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210160302 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Computer Science, College of Engineering and IT, Amran University, Amran, Yemen |
| authorships[4].institutions[0].id | https://openalex.org/I204743663 |
| authorships[4].institutions[0].ror | https://ror.org/012bxv356 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204743663 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | University of Mysore |
| authorships[4].institutions[1].id | https://openalex.org/I4210160302 |
| authorships[4].institutions[1].ror | https://ror.org/055y2t972 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210160302 |
| authorships[4].institutions[1].country_code | YE |
| authorships[4].institutions[1].display_name | Amran University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Belal Abdullah Hezam Murshed |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, College of Engineering and IT, Amran University, Amran, Yemen, Department of Studies in Computer Science, Mysore University, Mysore, Karnataka, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10107993.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | To Cluster or Not to Cluster: The Impact of Clustering on the Performance of Aspect-Based Collaborative Filtering |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| related_works | https://openalex.org/W2348159088, https://openalex.org/W2076210137, https://openalex.org/W2893089803, https://openalex.org/W2576320324, https://openalex.org/W2164349438, https://openalex.org/W2161485269, https://openalex.org/W3047015567, https://openalex.org/W2188572693, https://openalex.org/W2762277149, https://openalex.org/W2758310828 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2023.3270260 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10107993.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2023.3270260 |
| primary_location.id | doi:10.1109/access.2023.3270260 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10107993.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2023.3270260 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2991420365, https://openalex.org/W3126805253, https://openalex.org/W1987068480, https://openalex.org/W4312581961, https://openalex.org/W2037351199, https://openalex.org/W2747494806, https://openalex.org/W2966937748, https://openalex.org/W3119339920, https://openalex.org/W3109575922, https://openalex.org/W2799579227, https://openalex.org/W2892570000, https://openalex.org/W2942878061, https://openalex.org/W2624653984, https://openalex.org/W4211075818, https://openalex.org/W2084127140, https://openalex.org/W2085276903, https://openalex.org/W4211162995, https://openalex.org/W3201841349, https://openalex.org/W2092780433, https://openalex.org/W3096677679, https://openalex.org/W2905305843, https://openalex.org/W3108127110, https://openalex.org/W6725081417, https://openalex.org/W2788953034, https://openalex.org/W2200988052, https://openalex.org/W3097103183, https://openalex.org/W2441496199, https://openalex.org/W3092723932, https://openalex.org/W3204266596, https://openalex.org/W2965805264, https://openalex.org/W2013427808, https://openalex.org/W1997377854, https://openalex.org/W2114433479, https://openalex.org/W6676871904, https://openalex.org/W2049478259, https://openalex.org/W1938421469, https://openalex.org/W4226195494, https://openalex.org/W3006061359, https://openalex.org/W2963337756, https://openalex.org/W6676744775, https://openalex.org/W2742657630, https://openalex.org/W2606749808, https://openalex.org/W2982225079, https://openalex.org/W6797999575, https://openalex.org/W3168663695, https://openalex.org/W2278353820, https://openalex.org/W2596285588, https://openalex.org/W3091875091, https://openalex.org/W2061873838, https://openalex.org/W2333266781, https://openalex.org/W3188048704, https://openalex.org/W6636510571, https://openalex.org/W6676974665, https://openalex.org/W2580878117, https://openalex.org/W6801573793, https://openalex.org/W1972156947, https://openalex.org/W3201566571, https://openalex.org/W4225565607, https://openalex.org/W2111975591, https://openalex.org/W4289435132, https://openalex.org/W2111162011, https://openalex.org/W1614298861 |
| referenced_works_count | 62 |
| abstract_inverted_index.a | 45, 91, 118, 145, 227, 269 |
| abstract_inverted_index.As | 117 |
| abstract_inverted_index.CF | 36, 43, 140, 146, 262, 283, 301 |
| abstract_inverted_index.It | 14 |
| abstract_inverted_index.as | 226 |
| abstract_inverted_index.be | 68, 186 |
| abstract_inverted_index.by | 174, 281 |
| abstract_inverted_index.in | 11, 62, 70, 80, 109, 157, 169, 307 |
| abstract_inverted_index.is | 3, 37, 86, 129, 224, 278 |
| abstract_inverted_index.it | 128 |
| abstract_inverted_index.of | 5, 23, 32, 35, 75, 94, 105, 121, 139, 159, 238, 257, 285, 309 |
| abstract_inverted_index.on | 20, 53, 149, 180 |
| abstract_inverted_index.to | 17, 38, 56, 165, 193, 304 |
| abstract_inverted_index.Our | 198 |
| abstract_inverted_index.The | 82, 162 |
| abstract_inverted_index.and | 189, 202, 235 |
| abstract_inverted_index.are | 212, 241, 265 |
| abstract_inverted_index.but | 127 |
| abstract_inverted_index.can | 67, 89 |
| abstract_inverted_index.for | 230 |
| abstract_inverted_index.how | 132 |
| abstract_inverted_index.may | 112, 123 |
| abstract_inverted_index.one | 4, 31 |
| abstract_inverted_index.out | 267 |
| abstract_inverted_index.the | 6, 21, 33, 54, 58, 76, 103, 114, 137, 154, 167, 170, 195, 217, 232, 245, 255, 273, 286, 297 |
| abstract_inverted_index.who | 26 |
| abstract_inverted_index.yet | 130 |
| abstract_inverted_index.(CF) | 2 |
| abstract_inverted_index.This | 142, 251 |
| abstract_inverted_index.User | 65 |
| abstract_inverted_index.aims | 34, 164 |
| abstract_inverted_index.also | 107, 253, 279 |
| abstract_inverted_index.find | 39 |
| abstract_inverted_index.into | 177, 214 |
| abstract_inverted_index.less | 187, 191 |
| abstract_inverted_index.made | 243 |
| abstract_inverted_index.most | 7, 83 |
| abstract_inverted_index.much | 133 |
| abstract_inverted_index.only | 52 |
| abstract_inverted_index.poor | 63 |
| abstract_inverted_index.real | 270 |
| abstract_inverted_index.set. | 197 |
| abstract_inverted_index.show | 295 |
| abstract_inverted_index.that | 152, 259, 296 |
| abstract_inverted_index.them | 204 |
| abstract_inverted_index.then | 242 |
| abstract_inverted_index.this | 125, 134 |
| abstract_inverted_index.thus | 97 |
| abstract_inverted_index.used | 225 |
| abstract_inverted_index.when | 50 |
| abstract_inverted_index.will | 185 |
| abstract_inverted_index.with | 289 |
| abstract_inverted_index.Then, | 210 |
| abstract_inverted_index.Thus, | 30 |
| abstract_inverted_index.above | 155 |
| abstract_inverted_index.based | 19, 148, 179 |
| abstract_inverted_index.issue | 156 |
| abstract_inverted_index.items | 16, 240 |
| abstract_inverted_index.movie | 275 |
| abstract_inverted_index.other | 24, 305 |
| abstract_inverted_index.share | 27 |
| abstract_inverted_index.study | 143, 252 |
| abstract_inverted_index.terms | 158, 308 |
| abstract_inverted_index.their | 28, 181 |
| abstract_inverted_index.those | 72 |
| abstract_inverted_index.three | 290, 310 |
| abstract_inverted_index.users | 18, 25 |
| abstract_inverted_index.using | 205, 216, 244, 268 |
| abstract_inverted_index.which | 88, 184 |
| abstract_inverted_index.would | 135 |
| abstract_inverted_index.Amazon | 274 |
| abstract_inverted_index.affect | 136 |
| abstract_inverted_index.aspect | 150 |
| abstract_inverted_index.lessen | 124 |
| abstract_inverted_index.matrix | 173 |
| abstract_inverted_index.memory | 192 |
| abstract_inverted_index.model. | 209 |
| abstract_inverted_index.number | 104, 256 |
| abstract_inverted_index.rating | 48, 160, 172 |
| abstract_inverted_index.reduce | 166 |
| abstract_inverted_index.sparse | 46 |
| abstract_inverted_index.unseen | 239 |
| abstract_inverted_index.widely | 8 |
| abstract_inverted_index.K-means | 218 |
| abstract_inverted_index.Results | 294 |
| abstract_inverted_index.aspects | 106, 122, 176, 201, 211, 258 |
| abstract_inverted_index.because | 74 |
| abstract_inverted_index.carried | 266 |
| abstract_inverted_index.diverse | 77 |
| abstract_inverted_index.element | 85 |
| abstract_inverted_index.finding | 231 |
| abstract_inverted_index.impacts | 261 |
| abstract_inverted_index.matrix, | 49 |
| abstract_inverted_index.measure | 229 |
| abstract_inverted_index.popular | 84 |
| abstract_inverted_index.precise | 59 |
| abstract_inverted_index.provide | 90 |
| abstract_inverted_index.ratings | 22, 55, 237 |
| abstract_inverted_index.relying | 51 |
| abstract_inverted_index.require | 190 |
| abstract_inverted_index.result, | 119 |
| abstract_inverted_index.results | 108 |
| abstract_inverted_index.reviews | 66 |
| abstract_inverted_index.unclear | 131 |
| abstract_inverted_index.However, | 101 |
| abstract_inverted_index.Word2vec | 208 |
| abstract_inverted_index.accuracy | 312 |
| abstract_inverted_index.analysis | 93 |
| abstract_inverted_index.approach | 147, 163, 199, 288, 299 |
| abstract_inverted_index.aspects, | 87 |
| abstract_inverted_index.baseline | 292 |
| abstract_inverted_index.clusters | 178, 215 |
| abstract_inverted_index.compared | 303 |
| abstract_inverted_index.dataset. | 276 |
| abstract_inverted_index.dataset: | 272 |
| abstract_inverted_index.discover | 194 |
| abstract_inverted_index.distance | 223 |
| abstract_inverted_index.elements | 78 |
| abstract_inverted_index.extracts | 200 |
| abstract_inverted_index.grouping | 175 |
| abstract_inverted_index.identify | 57 |
| abstract_inverted_index.improves | 300 |
| abstract_inverted_index.metrics. | 313 |
| abstract_inverted_index.produces | 44 |
| abstract_inverted_index.proposed | 287, 298 |
| abstract_inverted_index.proposes | 144 |
| abstract_inverted_index.reliable | 40 |
| abstract_inverted_index.reviews. | 81 |
| abstract_inverted_index.semantic | 182 |
| abstract_inverted_index.suggests | 15 |
| abstract_inverted_index.systems. | 141 |
| abstract_inverted_index.utilised | 9 |
| abstract_inverted_index.<tex-math | 247 |
| abstract_inverted_index.Euclidean | 222 |
| abstract_inverted_index.addresses | 153 |
| abstract_inverted_index.available | 79 |
| abstract_inverted_index.comparing | 282 |
| abstract_inverted_index.different | 291 |
| abstract_inverted_index.essential | 69 |
| abstract_inverted_index.expensive | 188 |
| abstract_inverted_index.filtering | 1 |
| abstract_inverted_index.improving | 98 |
| abstract_inverted_index.organised | 213 |
| abstract_inverted_index.performed | 280 |
| abstract_inverted_index.predicted | 236 |
| abstract_inverted_index.resulting | 61 |
| abstract_inverted_index.sparsity, | 110, 126 |
| abstract_inverted_index.therefore | 111 |
| abstract_inverted_index.user-item | 47 |
| abstract_inverted_index.Evaluation | 277 |
| abstract_inverted_index.Typically, | 42 |
| abstract_inverted_index.algorithm. | 220, 250 |
| abstract_inverted_index.approaches | 10, 306 |
| abstract_inverted_index.clustering | 120, 151, 219 |
| abstract_inverted_index.identifies | 254 |
| abstract_inverted_index.increasing | 102 |
| abstract_inverted_index.neighbours | 234 |
| abstract_inverted_index.overcoming | 71 |
| abstract_inverted_index.predictive | 311 |
| abstract_inverted_index.represents | 203 |
| abstract_inverted_index.similarity | 228 |
| abstract_inverted_index.situations | 73 |
| abstract_inverted_index.sparseness | 168 |
| abstract_inverted_index.Experiments | 264 |
| abstract_inverted_index.approaches. | 293 |
| abstract_inverted_index.appropriate | 233 |
| abstract_inverted_index.behaviours, | 96 |
| abstract_inverted_index.deteriorate | 113 |
| abstract_inverted_index.large-scale | 271 |
| abstract_inverted_index.neighbours, | 60 |
| abstract_inverted_index.neighbours. | 41 |
| abstract_inverted_index.performance | 138, 284, 302 |
| abstract_inverted_index.pre-trained | 207 |
| abstract_inverted_index.prediction. | 161 |
| abstract_inverted_index.similarity, | 183 |
| abstract_inverted_index.techniques. | 13 |
| abstract_inverted_index.fine-grained | 92 |
| abstract_inverted_index.performance. | 64, 116, 263 |
| abstract_inverted_index.personalised | 99 |
| abstract_inverted_index.preferences. | 29 |
| abstract_inverted_index.Collaborative | 0 |
| abstract_inverted_index.neighbourhood | 196 |
| abstract_inverted_index.significantly | 260 |
| abstract_inverted_index.users’ | 95 |
| abstract_inverted_index.multi-criteria | 171 |
| abstract_inverted_index.recommendation | 12, 115 |
| abstract_inverted_index.Google’s | 206 |
| abstract_inverted_index.<inline-formula> | 246 |
| abstract_inverted_index.recommendations. | 100 |
| abstract_inverted_index.Multi-dimensional | 221 |
| abstract_inverted_index.notation="LaTeX">$k$ | 248 |
| abstract_inverted_index.</tex-math></inline-formula>NN | 249 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile.value | 0.96018276 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |