To Design Scalable Free Energy Perturbation Networks, Optimal Is Not Enough Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1021/acs.jcim.2c01579
Drug discovery is accelerated with computational methods such as alchemical simulations to estimate ligand affinities. In particular, relative binding free energy (RBFE) simulations are beneficial for lead optimization. To use RBFE simulations to compare prospective ligands in silico, researchers first plan the simulation experiment, using graphs where nodes represent ligands and graph edges represent alchemical transformations between ligands. Recent work demonstrated that optimizing the statistical architecture of these perturbation graphs improves the accuracy of the predicted changes in the free energy of ligand binding. Therefore, to improve the success rate of computational drug discovery, we present the open-source software package High Information Mapper (HiMap)─a new take on its predecessor, Lead Optimization Mapper (LOMAP). HiMap removes heuristics decisions from design selection and instead finds statistically optimal graphs over ligands clustered with machine learning. Beyond optimal design generation, we present theoretical insights for designing alchemical perturbation maps. Some of these results include that for n number of nodes, the precision of perturbation maps is stable at n·ln(n) edges. This result indicates that even an "optimal" graph can result in unexpectedly high errors if a plan includes too few alchemical transformations for the given number of ligands and edges. And, as a study compares more ligands, the performance of even optimal graphs will deteriorate with linear scaling of the edge count. In this sense, ensuring an A- or D-optimal topology is not enough to produce robust errors. We additionally find that optimal designs will converge more rapidly than radial and LOMAP designs. Moreover, we derive bounds for how clustering reduces cost for designs with a constant expected relative error per cluster, invariant of the size of the design. These results inform how to best design perturbation maps for computational drug discovery and have broader implications for experimental design.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acs.jcim.2c01579
- OA Status
- green
- Cited By
- 14
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4323308282
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4323308282Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acs.jcim.2c01579Digital Object Identifier
- Title
-
To Design Scalable Free Energy Perturbation Networks, Optimal Is Not EnoughWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-06Full publication date if available
- Authors
-
Mary Pitman, David F. Hahn, Gary Tresadern, David L. MobleyList of authors in order
- Landing page
-
https://doi.org/10.1021/acs.jcim.2c01579Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pmc.ncbi.nlm.nih.gov/articles/PMC10547263/pdf/nihms-1930089.pdfDirect OA link when available
- Concepts
-
Computer science, Heuristics, Scalability, Mathematical optimization, Algorithm, Theoretical computer science, Mathematics, Operating system, DatabaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 5, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4323308282 |
|---|---|
| doi | https://doi.org/10.1021/acs.jcim.2c01579 |
| ids.doi | https://doi.org/10.1021/acs.jcim.2c01579 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36878475 |
| ids.openalex | https://openalex.org/W4323308282 |
| fwci | 4.32545685 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D013816 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Thermodynamics |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D008024 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Ligands |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D011446 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Prospective Studies |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D056004 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Molecular Dynamics Simulation |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D019277 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Entropy |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D011485 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Protein Binding |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D013816 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Thermodynamics |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D008024 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Ligands |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D011446 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Prospective Studies |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D056004 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Molecular Dynamics Simulation |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D019277 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Entropy |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D011485 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Protein Binding |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D013816 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Thermodynamics |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D008024 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Ligands |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D011446 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Prospective Studies |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D056004 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Molecular Dynamics Simulation |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D019277 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Entropy |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D011485 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Protein Binding |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D013816 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Thermodynamics |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D008024 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Ligands |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D011446 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Prospective Studies |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D056004 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Molecular Dynamics Simulation |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D019277 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Entropy |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D011485 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Protein Binding |
| type | article |
| title | To Design Scalable Free Energy Perturbation Networks, Optimal Is Not Enough |
| awards[0].id | https://openalex.org/G4972120050 |
| awards[0].funder_id | https://openalex.org/F4320306076 |
| awards[0].display_name | |
| awards[0].funder_award_id | CHE-2136142 |
| awards[0].funder_display_name | National Science Foundation |
| awards[1].id | https://openalex.org/G4033479444 |
| awards[1].funder_id | https://openalex.org/F4320332161 |
| awards[1].display_name | |
| awards[1].funder_award_id | GM108889 |
| awards[1].funder_display_name | National Institutes of Health |
| biblio.issue | 6 |
| biblio.volume | 63 |
| biblio.last_page | 1793 |
| biblio.first_page | 1776 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9939000010490417 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| topics[2].id | https://openalex.org/T10621 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9890999794006348 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Gene Regulatory Network Analysis |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320332161 |
| funders[1].ror | https://ror.org/01cwqze88 |
| funders[1].display_name | National Institutes of Health |
| funders[2].id | https://openalex.org/F4320337601 |
| funders[2].ror | https://ror.org/03qd7mz70 |
| funders[2].display_name | Janssen Pharmaceuticals |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6728256344795227 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C127705205 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6478495597839355 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5748245 |
| concepts[1].display_name | Heuristics |
| concepts[2].id | https://openalex.org/C48044578 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5823388695716858 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[2].display_name | Scalability |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4131316840648651 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4034048020839691 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C80444323 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3999840021133423 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[5].display_name | Theoretical computer science |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.17770996689796448 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C111919701 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[7].display_name | Operating system |
| concepts[8].id | https://openalex.org/C77088390 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[8].display_name | Database |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6728256344795227 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/heuristics |
| keywords[1].score | 0.6478495597839355 |
| keywords[1].display_name | Heuristics |
| keywords[2].id | https://openalex.org/keywords/scalability |
| keywords[2].score | 0.5823388695716858 |
| keywords[2].display_name | Scalability |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.4131316840648651 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.4034048020839691 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[5].score | 0.3999840021133423 |
| keywords[5].display_name | Theoretical computer science |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.17770996689796448 |
| keywords[6].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1021/acs.jcim.2c01579 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S167262187 |
| locations[0].source.issn | 1549-9596, 1549-960X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1549-9596 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Chemical Information and Modeling |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_lineage_names | American Chemical Society |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Chemical Information and Modeling |
| locations[0].landing_page_url | https://doi.org/10.1021/acs.jcim.2c01579 |
| locations[1].id | pmid:36878475 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of chemical information and modeling |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36878475 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10547263 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10547263/pdf/nihms-1930089.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Chem Inf Model |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10547263 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5023064807 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2613-5769 |
| authorships[0].author.display_name | Mary Pitman |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204250578 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California 92697, United States |
| authorships[0].institutions[0].id | https://openalex.org/I204250578 |
| authorships[0].institutions[0].ror | https://ror.org/04gyf1771 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204250578 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Irvine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mary Pitman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California 92697, United States |
| authorships[1].author.id | https://openalex.org/A5041724634 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2830-6880 |
| authorships[1].author.display_name | David F. Hahn |
| authorships[1].countries | BE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I137982388 |
| authorships[1].affiliations[0].raw_affiliation_string | Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse, B-2340, Belgium |
| authorships[1].institutions[0].id | https://openalex.org/I137982388 |
| authorships[1].institutions[0].ror | https://ror.org/04yzcpd71 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I1330063522, https://openalex.org/I137982388 |
| authorships[1].institutions[0].country_code | BE |
| authorships[1].institutions[0].display_name | Janssen (Belgium) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | David F. Hahn |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse, B-2340, Belgium |
| authorships[2].author.id | https://openalex.org/A5022201149 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4801-1644 |
| authorships[2].author.display_name | Gary Tresadern |
| authorships[2].countries | BE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I137982388 |
| authorships[2].affiliations[0].raw_affiliation_string | Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse, B-2340, Belgium |
| authorships[2].institutions[0].id | https://openalex.org/I137982388 |
| authorships[2].institutions[0].ror | https://ror.org/04yzcpd71 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330063522, https://openalex.org/I137982388 |
| authorships[2].institutions[0].country_code | BE |
| authorships[2].institutions[0].display_name | Janssen (Belgium) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gary Tresadern |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Computational Chemistry, Janssen Research & Development, Turnhoutseweg 30, Beerse, B-2340, Belgium |
| authorships[3].author.id | https://openalex.org/A5007496868 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1083-5533 |
| authorships[3].author.display_name | David L. Mobley |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204250578 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Chemistry, University of California, Irvine, California 92697, United States |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I204250578 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California 92697, United States |
| authorships[3].institutions[0].id | https://openalex.org/I204250578 |
| authorships[3].institutions[0].ror | https://ror.org/04gyf1771 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204250578 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of California, Irvine |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | David L. Mobley |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Chemistry, University of California, Irvine, California 92697, United States, Department of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California 92697, United States |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10547263/pdf/nihms-1930089.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | To Design Scalable Free Energy Perturbation Networks, Optimal Is Not Enough |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-20T23:13:51.555489 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2280422768, https://openalex.org/W3143197806, https://openalex.org/W4252555497, https://openalex.org/W3121175838, https://openalex.org/W3016293053, https://openalex.org/W2051487156, https://openalex.org/W1690653314, https://openalex.org/W2401723157, https://openalex.org/W2065055572, https://openalex.org/W2784269775 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:10547263 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10547263/pdf/nihms-1930089.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Chem Inf Model |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10547263 |
| primary_location.id | doi:10.1021/acs.jcim.2c01579 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S167262187 |
| primary_location.source.issn | 1549-9596, 1549-960X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1549-9596 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Chemical Information and Modeling |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_lineage_names | American Chemical Society |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Chemical Information and Modeling |
| primary_location.landing_page_url | https://doi.org/10.1021/acs.jcim.2c01579 |
| publication_date | 2023-03-06 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2794694420, https://openalex.org/W3095693951, https://openalex.org/W2081775931, https://openalex.org/W2155554859, https://openalex.org/W2151746580, https://openalex.org/W3047663514, https://openalex.org/W2093755925, https://openalex.org/W4297914802, https://openalex.org/W2981128300, https://openalex.org/W2985021042, https://openalex.org/W2498631646, https://openalex.org/W4299798163, https://openalex.org/W2027523908, https://openalex.org/W3133835351, https://openalex.org/W10031511, https://openalex.org/W2982437619, https://openalex.org/W3170382704, https://openalex.org/W2097749765, https://openalex.org/W2517047459, https://openalex.org/W2118746565, https://openalex.org/W3132743969, https://openalex.org/W4312512934, https://openalex.org/W2146162554, https://openalex.org/W2156549096, https://openalex.org/W2208284559, https://openalex.org/W2021735138, https://openalex.org/W2431497588, https://openalex.org/W2323942455, https://openalex.org/W2154670681, https://openalex.org/W2990010612, https://openalex.org/W3135702490, https://openalex.org/W2096883126, https://openalex.org/W2066907464, https://openalex.org/W2132720896, https://openalex.org/W3136297163, https://openalex.org/W2955362557, https://openalex.org/W3198880143, https://openalex.org/W2140841928, https://openalex.org/W1994292819, https://openalex.org/W1536617987, https://openalex.org/W2006121606, https://openalex.org/W3180820756, https://openalex.org/W2139823471, https://openalex.org/W4313128019, https://openalex.org/W1972482761, https://openalex.org/W3173713405, https://openalex.org/W3111206976 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 181, 198, 261 |
| abstract_inverted_index.A- | 223 |
| abstract_inverted_index.In | 15, 218 |
| abstract_inverted_index.To | 28 |
| abstract_inverted_index.We | 234 |
| abstract_inverted_index.an | 171, 222 |
| abstract_inverted_index.as | 8, 197 |
| abstract_inverted_index.at | 163 |
| abstract_inverted_index.if | 180 |
| abstract_inverted_index.in | 77, 176 |
| abstract_inverted_index.is | 2, 161, 227 |
| abstract_inverted_index.of | 66, 73, 81, 90, 146, 154, 158, 192, 205, 214, 269, 272 |
| abstract_inverted_index.on | 106 |
| abstract_inverted_index.or | 224 |
| abstract_inverted_index.to | 11, 32, 85, 230, 279 |
| abstract_inverted_index.we | 94, 136, 250 |
| abstract_inverted_index.and | 50, 120, 194, 246, 288 |
| abstract_inverted_index.are | 23 |
| abstract_inverted_index.can | 174 |
| abstract_inverted_index.few | 185 |
| abstract_inverted_index.for | 25, 140, 151, 188, 253, 258, 284, 292 |
| abstract_inverted_index.how | 254, 278 |
| abstract_inverted_index.its | 107 |
| abstract_inverted_index.new | 104 |
| abstract_inverted_index.not | 228 |
| abstract_inverted_index.per | 266 |
| abstract_inverted_index.the | 41, 63, 71, 74, 78, 87, 96, 156, 189, 203, 215, 270, 273 |
| abstract_inverted_index.too | 184 |
| abstract_inverted_index.use | 29 |
| abstract_inverted_index.And, | 196 |
| abstract_inverted_index.Drug | 0 |
| abstract_inverted_index.High | 100 |
| abstract_inverted_index.Lead | 109 |
| abstract_inverted_index.RBFE | 30 |
| abstract_inverted_index.Some | 145 |
| abstract_inverted_index.This | 166 |
| abstract_inverted_index.best | 280 |
| abstract_inverted_index.cost | 257 |
| abstract_inverted_index.drug | 92, 286 |
| abstract_inverted_index.edge | 216 |
| abstract_inverted_index.even | 170, 206 |
| abstract_inverted_index.find | 236 |
| abstract_inverted_index.free | 19, 79 |
| abstract_inverted_index.from | 117 |
| abstract_inverted_index.have | 289 |
| abstract_inverted_index.high | 178 |
| abstract_inverted_index.lead | 26 |
| abstract_inverted_index.maps | 160, 283 |
| abstract_inverted_index.more | 201, 242 |
| abstract_inverted_index.over | 126 |
| abstract_inverted_index.plan | 40, 182 |
| abstract_inverted_index.rate | 89 |
| abstract_inverted_index.size | 271 |
| abstract_inverted_index.such | 7 |
| abstract_inverted_index.take | 105 |
| abstract_inverted_index.than | 244 |
| abstract_inverted_index.that | 61, 150, 169, 237 |
| abstract_inverted_index.this | 219 |
| abstract_inverted_index.will | 209, 240 |
| abstract_inverted_index.with | 4, 129, 211, 260 |
| abstract_inverted_index.work | 59 |
| abstract_inverted_index.<i>in | 36 |
| abstract_inverted_index.HiMap | 113 |
| abstract_inverted_index.LOMAP | 247 |
| abstract_inverted_index.These | 275 |
| abstract_inverted_index.edges | 52 |
| abstract_inverted_index.error | 265 |
| abstract_inverted_index.finds | 122 |
| abstract_inverted_index.first | 39 |
| abstract_inverted_index.given | 190 |
| abstract_inverted_index.graph | 51, 173 |
| abstract_inverted_index.maps. | 144 |
| abstract_inverted_index.nodes | 47 |
| abstract_inverted_index.study | 199 |
| abstract_inverted_index.these | 67, 147 |
| abstract_inverted_index.using | 44 |
| abstract_inverted_index.where | 46 |
| abstract_inverted_index.(RBFE) | 21 |
| abstract_inverted_index.Beyond | 132 |
| abstract_inverted_index.Mapper | 102, 111 |
| abstract_inverted_index.Recent | 58 |
| abstract_inverted_index.bounds | 252 |
| abstract_inverted_index.count. | 217 |
| abstract_inverted_index.derive | 251 |
| abstract_inverted_index.design | 118, 134, 281 |
| abstract_inverted_index.edges. | 165, 195 |
| abstract_inverted_index.energy | 20, 80 |
| abstract_inverted_index.enough | 229 |
| abstract_inverted_index.errors | 179 |
| abstract_inverted_index.graphs | 45, 69, 125, 208 |
| abstract_inverted_index.inform | 277 |
| abstract_inverted_index.ligand | 13, 82 |
| abstract_inverted_index.linear | 212 |
| abstract_inverted_index.nodes, | 155 |
| abstract_inverted_index.number | 153, 191 |
| abstract_inverted_index.radial | 245 |
| abstract_inverted_index.result | 167, 175 |
| abstract_inverted_index.robust | 232 |
| abstract_inverted_index.sense, | 220 |
| abstract_inverted_index.stable | 162 |
| abstract_inverted_index.between | 56 |
| abstract_inverted_index.binding | 18 |
| abstract_inverted_index.broader | 290 |
| abstract_inverted_index.changes | 76 |
| abstract_inverted_index.compare | 33 |
| abstract_inverted_index.design. | 274, 294 |
| abstract_inverted_index.designs | 239, 259 |
| abstract_inverted_index.errors. | 233 |
| abstract_inverted_index.improve | 86 |
| abstract_inverted_index.include | 149 |
| abstract_inverted_index.instead | 121 |
| abstract_inverted_index.ligands | 35, 49, 127, 193 |
| abstract_inverted_index.machine | 130 |
| abstract_inverted_index.methods | 6 |
| abstract_inverted_index.optimal | 124, 133, 207, 238 |
| abstract_inverted_index.package | 99 |
| abstract_inverted_index.present | 95, 137 |
| abstract_inverted_index.produce | 231 |
| abstract_inverted_index.rapidly | 243 |
| abstract_inverted_index.reduces | 256 |
| abstract_inverted_index.removes | 114 |
| abstract_inverted_index.results | 148, 276 |
| abstract_inverted_index.scaling | 213 |
| abstract_inverted_index.success | 88 |
| abstract_inverted_index.(LOMAP). | 112 |
| abstract_inverted_index.<i>n</i> | 152 |
| abstract_inverted_index.accuracy | 72 |
| abstract_inverted_index.binding. | 83 |
| abstract_inverted_index.cluster, | 267 |
| abstract_inverted_index.compares | 200 |
| abstract_inverted_index.constant | 262 |
| abstract_inverted_index.converge | 241 |
| abstract_inverted_index.designs. | 248 |
| abstract_inverted_index.ensuring | 221 |
| abstract_inverted_index.estimate | 12 |
| abstract_inverted_index.expected | 263 |
| abstract_inverted_index.improves | 70 |
| abstract_inverted_index.includes | 183 |
| abstract_inverted_index.insights | 139 |
| abstract_inverted_index.ligands, | 202 |
| abstract_inverted_index.ligands. | 57 |
| abstract_inverted_index.relative | 17, 264 |
| abstract_inverted_index.software | 98 |
| abstract_inverted_index.topology | 226 |
| abstract_inverted_index."optimal" | 172 |
| abstract_inverted_index.D-optimal | 225 |
| abstract_inverted_index.Moreover, | 249 |
| abstract_inverted_index.clustered | 128 |
| abstract_inverted_index.decisions | 116 |
| abstract_inverted_index.designing | 141 |
| abstract_inverted_index.discovery | 1, 287 |
| abstract_inverted_index.indicates | 168 |
| abstract_inverted_index.invariant | 268 |
| abstract_inverted_index.learning. | 131 |
| abstract_inverted_index.precision | 157 |
| abstract_inverted_index.predicted | 75 |
| abstract_inverted_index.represent | 48, 53 |
| abstract_inverted_index.selection | 119 |
| abstract_inverted_index.Therefore, | 84 |
| abstract_inverted_index.alchemical | 9, 54, 142, 186 |
| abstract_inverted_index.beneficial | 24 |
| abstract_inverted_index.clustering | 255 |
| abstract_inverted_index.discovery, | 93 |
| abstract_inverted_index.heuristics | 115 |
| abstract_inverted_index.optimizing | 62 |
| abstract_inverted_index.simulation | 42 |
| abstract_inverted_index.(HiMap)─a | 103 |
| abstract_inverted_index.Information | 101 |
| abstract_inverted_index.accelerated | 3 |
| abstract_inverted_index.affinities. | 14 |
| abstract_inverted_index.deteriorate | 210 |
| abstract_inverted_index.experiment, | 43 |
| abstract_inverted_index.generation, | 135 |
| abstract_inverted_index.open-source | 97 |
| abstract_inverted_index.particular, | 16 |
| abstract_inverted_index.performance | 204 |
| abstract_inverted_index.prospective | 34 |
| abstract_inverted_index.researchers | 38 |
| abstract_inverted_index.silico</i>, | 37 |
| abstract_inverted_index.simulations | 10, 22, 31 |
| abstract_inverted_index.statistical | 64 |
| abstract_inverted_index.theoretical | 138 |
| abstract_inverted_index.Optimization | 110 |
| abstract_inverted_index.additionally | 235 |
| abstract_inverted_index.architecture | 65 |
| abstract_inverted_index.demonstrated | 60 |
| abstract_inverted_index.experimental | 293 |
| abstract_inverted_index.implications | 291 |
| abstract_inverted_index.perturbation | 68, 143, 159, 282 |
| abstract_inverted_index.predecessor, | 108 |
| abstract_inverted_index.unexpectedly | 177 |
| abstract_inverted_index.computational | 5, 91, 285 |
| abstract_inverted_index.optimization. | 27 |
| abstract_inverted_index.statistically | 123 |
| abstract_inverted_index.transformations | 55, 187 |
| abstract_inverted_index.<i>n</i>·ln(<i>n</i>) | 164 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5007496868 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I204250578 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.93274064 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |