Tobacco yield estimation via multi-source data fusion and recurrent neural networks Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.jag.2025.104925
In China, tobacco production must strictly follow the yield plan set by the higher authorities. In this context, accurate and stable yield estimation is meaningful for effective production management. In this paper, we adopted a multi-source data fusion strategy to develop the yield estimation models for tobacco. The data used include unmanned aerial vehicle (UAV)-borne hyperspectral features (HF), biophysical parameters (BPP) collected in the field, and biochemical parameters (BCP) measured in the laboratory. Since the crop state at different growth stages both affect the final yield, we employed two typical recurrent neural network (RNN) algorithms, long short-term memory (LSTM) and gated recurrent unit (GRU), for modeling. The random forest (RF) algorithm was selected as the baseline scheme. In addition, we designed a one-dimensional convolutional autoencoder (AEC1D) to unify the input dimensions of raw data from different years. It was found that yield estimation performance from multi-source data was more accurate than using any single feature. The GRU model with the HF+BCP+BPP combination achieved the highest estimation accuracy, with an Rv2 of 0.705. The overall performance of LSTM and GRU models was also better than that of RF. We also quantified the contribution of each feature to the model, with HF, BPP, and BCP accounting for approximately 45%, 32%, and 23%, respectively. This study demonstrated the benefits of multi-source data fusion and RNN algorithms in estimating tobacco yields, which can be used to assist in site-specific crop management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jag.2025.104925
- OA Status
- gold
- References
- 55
- OpenAlex ID
- https://openalex.org/W4415760850
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415760850Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jag.2025.104925Digital Object Identifier
- Title
-
Tobacco yield estimation via multi-source data fusion and recurrent neural networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-01Full publication date if available
- Authors
-
Mingzheng Zhang, Baoyuan Zhang, Chunjiang Zhao, Liping Chen, Yan Kuai, Cong Wang, Shuwen Jiang, Dong Chen, Qingzhen Zhu, Zhiyong Wang, Xiaohe Gu, Tianen ChenList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jag.2025.104925Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jag.2025.104925Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
55Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415760850 |
|---|---|
| doi | https://doi.org/10.1016/j.jag.2025.104925 |
| ids.doi | https://doi.org/10.1016/j.jag.2025.104925 |
| ids.openalex | https://openalex.org/W4415760850 |
| fwci | |
| type | article |
| title | Tobacco yield estimation via multi-source data fusion and recurrent neural networks |
| biblio.issue | |
| biblio.volume | 144 |
| biblio.last_page | 104925 |
| biblio.first_page | 104925 |
| is_xpac | False |
| apc_list.value | 2250 |
| apc_list.currency | USD |
| apc_list.value_usd | 2250 |
| apc_paid.value | 2250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2250 |
| language | en |
| locations[0].id | doi:10.1016/j.jag.2025.104925 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179989 |
| locations[0].source.issn | 1569-8432, 1872-826X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1569-8432 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jag.2025.104925 |
| locations[1].id | pmh:oai:doaj.org/article:dfaa6940b69e4899801d74d86c0c7526 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | International Journal of Applied Earth Observations and Geoinformation, Vol 144, Iss , Pp 104925- (2025) |
| locations[1].landing_page_url | https://doaj.org/article/dfaa6940b69e4899801d74d86c0c7526 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101424325 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0440-0939 |
| authorships[0].author.display_name | Mingzheng Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mingzheng Zhang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009519168 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Baoyuan Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Baoyuan Zhang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100604390 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1448-5091 |
| authorships[2].author.display_name | Chunjiang Zhao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chunjiang Zhao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100430189 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5135-4007 |
| authorships[3].author.display_name | Liping Chen |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liping Chen |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5063262622 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0647-7913 |
| authorships[4].author.display_name | Yan Kuai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yan Kuai |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100390461 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1777-3443 |
| authorships[5].author.display_name | Cong Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Cong Wang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5082018927 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Shuwen Jiang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Shuwen Jiang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5048024113 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6495-678X |
| authorships[7].author.display_name | Dong Chen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Dong Chen |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5035907827 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5122-9759 |
| authorships[8].author.display_name | Qingzhen Zhu |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Qingzhen Zhu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5056870188 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-0815-9254 |
| authorships[9].author.display_name | Zhiyong Wang |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Zhiyong Wang |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5026697566 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-7102-1939 |
| authorships[10].author.display_name | Xiaohe Gu |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Xiaohe Gu |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5088752886 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-4942-3077 |
| authorships[11].author.display_name | Tianen Chen |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Tian’en Chen |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jag.2025.104925 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-01T00:00:00 |
| display_name | Tobacco yield estimation via multi-source data fusion and recurrent neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1016/j.jag.2025.104925 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179989 |
| best_oa_location.source.issn | 1569-8432, 1872-826X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1569-8432 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jag.2025.104925 |
| primary_location.id | doi:10.1016/j.jag.2025.104925 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179989 |
| primary_location.source.issn | 1569-8432, 1872-826X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1569-8432 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jag.2025.104925 |
| publication_date | 2025-11-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3173964444, https://openalex.org/W4385525784, https://openalex.org/W2937638900, https://openalex.org/W3201706071, https://openalex.org/W4386798957, https://openalex.org/W1994044572, https://openalex.org/W3210472482, https://openalex.org/W4312176112, https://openalex.org/W3194083568, https://openalex.org/W4283590945, https://openalex.org/W4308832279, https://openalex.org/W4389592734, https://openalex.org/W3132104078, https://openalex.org/W3037968153, https://openalex.org/W3207723747, https://openalex.org/W2982101625, https://openalex.org/W3155560054, https://openalex.org/W2100495367, https://openalex.org/W3132666581, https://openalex.org/W4283169751, https://openalex.org/W2034709171, https://openalex.org/W3164809178, https://openalex.org/W4286250869, https://openalex.org/W4323545743, https://openalex.org/W2934229382, https://openalex.org/W3007045993, https://openalex.org/W2996667668, https://openalex.org/W4296532116, https://openalex.org/W4404956706, https://openalex.org/W4295814001, https://openalex.org/W2904027073, https://openalex.org/W2562063914, https://openalex.org/W4224308360, https://openalex.org/W2808053670, https://openalex.org/W4212798049, https://openalex.org/W4283210400, https://openalex.org/W4385436286, https://openalex.org/W3198376164, https://openalex.org/W2791891890, https://openalex.org/W2042970394, https://openalex.org/W4283693967, https://openalex.org/W2924352154, https://openalex.org/W4320890277, https://openalex.org/W2940232517, https://openalex.org/W3133618741, https://openalex.org/W2983376237, https://openalex.org/W3084320300, https://openalex.org/W3169469595, https://openalex.org/W3120192914, https://openalex.org/W4383032755, https://openalex.org/W2049556619, https://openalex.org/W4383337041, https://openalex.org/W4382876844, https://openalex.org/W2904875053, https://openalex.org/W4384067702 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 34, 121 |
| abstract_inverted_index.In | 0, 15, 29, 117 |
| abstract_inverted_index.It | 137 |
| abstract_inverted_index.We | 187 |
| abstract_inverted_index.an | 168 |
| abstract_inverted_index.as | 113 |
| abstract_inverted_index.at | 77 |
| abstract_inverted_index.be | 229 |
| abstract_inverted_index.by | 11 |
| abstract_inverted_index.in | 62, 70, 223, 233 |
| abstract_inverted_index.is | 23 |
| abstract_inverted_index.of | 131, 170, 175, 185, 192, 216 |
| abstract_inverted_index.to | 39, 126, 195, 231 |
| abstract_inverted_index.we | 32, 86, 119 |
| abstract_inverted_index.BCP | 202 |
| abstract_inverted_index.GRU | 156, 178 |
| abstract_inverted_index.HF, | 199 |
| abstract_inverted_index.RF. | 186 |
| abstract_inverted_index.RNN | 221 |
| abstract_inverted_index.Rv2 | 169 |
| abstract_inverted_index.The | 47, 106, 155, 172 |
| abstract_inverted_index.and | 19, 65, 99, 177, 201, 208, 220 |
| abstract_inverted_index.any | 152 |
| abstract_inverted_index.can | 228 |
| abstract_inverted_index.for | 25, 45, 104, 204 |
| abstract_inverted_index.raw | 132 |
| abstract_inverted_index.set | 10 |
| abstract_inverted_index.the | 7, 12, 41, 63, 71, 74, 83, 114, 128, 159, 163, 190, 196, 214 |
| abstract_inverted_index.two | 88 |
| abstract_inverted_index.was | 111, 138, 147, 180 |
| abstract_inverted_index.(RF) | 109 |
| abstract_inverted_index.23%, | 209 |
| abstract_inverted_index.32%, | 207 |
| abstract_inverted_index.45%, | 206 |
| abstract_inverted_index.BPP, | 200 |
| abstract_inverted_index.LSTM | 176 |
| abstract_inverted_index.This | 211 |
| abstract_inverted_index.also | 181, 188 |
| abstract_inverted_index.both | 81 |
| abstract_inverted_index.crop | 75, 235 |
| abstract_inverted_index.data | 36, 48, 133, 146, 218 |
| abstract_inverted_index.each | 193 |
| abstract_inverted_index.from | 134, 144 |
| abstract_inverted_index.long | 95 |
| abstract_inverted_index.more | 148 |
| abstract_inverted_index.must | 4 |
| abstract_inverted_index.plan | 9 |
| abstract_inverted_index.than | 150, 183 |
| abstract_inverted_index.that | 140, 184 |
| abstract_inverted_index.this | 16, 30 |
| abstract_inverted_index.unit | 102 |
| abstract_inverted_index.used | 49, 230 |
| abstract_inverted_index.with | 158, 167, 198 |
| abstract_inverted_index.(BCP) | 68 |
| abstract_inverted_index.(BPP) | 60 |
| abstract_inverted_index.(HF), | 57 |
| abstract_inverted_index.(RNN) | 93 |
| abstract_inverted_index.Since | 73 |
| abstract_inverted_index.final | 84 |
| abstract_inverted_index.found | 139 |
| abstract_inverted_index.gated | 100 |
| abstract_inverted_index.input | 129 |
| abstract_inverted_index.model | 157 |
| abstract_inverted_index.state | 76 |
| abstract_inverted_index.study | 212 |
| abstract_inverted_index.unify | 127 |
| abstract_inverted_index.using | 151 |
| abstract_inverted_index.which | 227 |
| abstract_inverted_index.yield | 8, 21, 42, 141 |
| abstract_inverted_index.(GRU), | 103 |
| abstract_inverted_index.(LSTM) | 98 |
| abstract_inverted_index.0.705. | 171 |
| abstract_inverted_index.China, | 1 |
| abstract_inverted_index.aerial | 52 |
| abstract_inverted_index.affect | 82 |
| abstract_inverted_index.assist | 232 |
| abstract_inverted_index.better | 182 |
| abstract_inverted_index.field, | 64 |
| abstract_inverted_index.follow | 6 |
| abstract_inverted_index.forest | 108 |
| abstract_inverted_index.fusion | 37, 219 |
| abstract_inverted_index.growth | 79 |
| abstract_inverted_index.higher | 13 |
| abstract_inverted_index.memory | 97 |
| abstract_inverted_index.model, | 197 |
| abstract_inverted_index.models | 44, 179 |
| abstract_inverted_index.neural | 91 |
| abstract_inverted_index.paper, | 31 |
| abstract_inverted_index.random | 107 |
| abstract_inverted_index.single | 153 |
| abstract_inverted_index.stable | 20 |
| abstract_inverted_index.stages | 80 |
| abstract_inverted_index.years. | 136 |
| abstract_inverted_index.yield, | 85 |
| abstract_inverted_index.(AEC1D) | 125 |
| abstract_inverted_index.adopted | 33 |
| abstract_inverted_index.develop | 40 |
| abstract_inverted_index.feature | 194 |
| abstract_inverted_index.highest | 164 |
| abstract_inverted_index.include | 50 |
| abstract_inverted_index.network | 92 |
| abstract_inverted_index.overall | 173 |
| abstract_inverted_index.scheme. | 116 |
| abstract_inverted_index.tobacco | 2, 225 |
| abstract_inverted_index.typical | 89 |
| abstract_inverted_index.vehicle | 53 |
| abstract_inverted_index.yields, | 226 |
| abstract_inverted_index.accurate | 18, 149 |
| abstract_inverted_index.achieved | 162 |
| abstract_inverted_index.baseline | 115 |
| abstract_inverted_index.benefits | 215 |
| abstract_inverted_index.context, | 17 |
| abstract_inverted_index.designed | 120 |
| abstract_inverted_index.employed | 87 |
| abstract_inverted_index.feature. | 154 |
| abstract_inverted_index.features | 56 |
| abstract_inverted_index.measured | 69 |
| abstract_inverted_index.selected | 112 |
| abstract_inverted_index.strategy | 38 |
| abstract_inverted_index.strictly | 5 |
| abstract_inverted_index.tobacco. | 46 |
| abstract_inverted_index.unmanned | 51 |
| abstract_inverted_index.accuracy, | 166 |
| abstract_inverted_index.addition, | 118 |
| abstract_inverted_index.algorithm | 110 |
| abstract_inverted_index.collected | 61 |
| abstract_inverted_index.different | 78, 135 |
| abstract_inverted_index.effective | 26 |
| abstract_inverted_index.modeling. | 105 |
| abstract_inverted_index.recurrent | 90, 101 |
| abstract_inverted_index.HF+BCP+BPP | 160 |
| abstract_inverted_index.accounting | 203 |
| abstract_inverted_index.algorithms | 222 |
| abstract_inverted_index.dimensions | 130 |
| abstract_inverted_index.estimating | 224 |
| abstract_inverted_index.estimation | 22, 43, 142, 165 |
| abstract_inverted_index.meaningful | 24 |
| abstract_inverted_index.parameters | 59, 67 |
| abstract_inverted_index.production | 3, 27 |
| abstract_inverted_index.quantified | 189 |
| abstract_inverted_index.short-term | 96 |
| abstract_inverted_index.(UAV)-borne | 54 |
| abstract_inverted_index.algorithms, | 94 |
| abstract_inverted_index.autoencoder | 124 |
| abstract_inverted_index.biochemical | 66 |
| abstract_inverted_index.biophysical | 58 |
| abstract_inverted_index.combination | 161 |
| abstract_inverted_index.laboratory. | 72 |
| abstract_inverted_index.management. | 28, 236 |
| abstract_inverted_index.performance | 143, 174 |
| abstract_inverted_index.authorities. | 14 |
| abstract_inverted_index.contribution | 191 |
| abstract_inverted_index.demonstrated | 213 |
| abstract_inverted_index.multi-source | 35, 145, 217 |
| abstract_inverted_index.approximately | 205 |
| abstract_inverted_index.convolutional | 123 |
| abstract_inverted_index.hyperspectral | 55 |
| abstract_inverted_index.respectively. | 210 |
| abstract_inverted_index.site-specific | 234 |
| abstract_inverted_index.one-dimensional | 122 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile |