Token-level Accept or Reject: A Micro Alignment Approach for Large Language Models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.19743
With the rapid development of Large Language Models (LLMs), aligning these models with human preferences and values is critical to ensuring ethical and safe applications. However, existing alignment techniques such as RLHF or DPO often require direct fine-tuning on LLMs with billions of parameters, resulting in substantial computational costs and inefficiencies. To address this, we propose Micro token-level Accept-Reject Aligning (MARA) approach designed to operate independently of the language models. MARA simplifies the alignment process by decomposing sentence-level preference learning into token-level binary classification, where a compact three-layer fully-connected network determines whether candidate tokens are "Accepted" or "Rejected" as part of the response. Extensive experiments across seven different LLMs and three open-source datasets show that MARA achieves significant improvements in alignment performance while reducing computational costs. The source code and implementation details are publicly available at https://github.com/IAAR-Shanghai/MARA, and the trained models are released at https://huggingface.co/IAAR-Shanghai/MARA_AGENTS.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.19743
- https://arxiv.org/pdf/2505.19743
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415035553
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415035553Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.19743Digital Object Identifier
- Title
-
Token-level Accept or Reject: A Micro Alignment Approach for Large Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-26Full publication date if available
- Authors
-
Yang Zhang, Yu Yu, Bo Tang, Limin Zhu, Chuxiong Sun, Wenqiang Wei, Jie Hu, Zheng Xie, Zhiyu Li, Feiyu Xiong, Edward ChungList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.19743Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.19743Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.19743Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415035553 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.19743 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.19743 |
| ids.openalex | https://openalex.org/W4415035553 |
| fwci | |
| type | preprint |
| title | Token-level Accept or Reject: A Micro Alignment Approach for Large Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9634000062942505 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9610999822616577 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.19743 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.19743 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.19743 |
| locations[1].id | doi:10.48550/arxiv.2505.19743 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.19743 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100354819 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4658-565X |
| authorships[0].author.display_name | Yang Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Yang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5110299446 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yu Yu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu, Yu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5057816960 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7129-0250 |
| authorships[2].author.display_name | Bo Tang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tang, Bo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5103205239 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3194-6731 |
| authorships[3].author.display_name | Limin Zhu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhu, Yu |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5057734833 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Chuxiong Sun |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sun, Chuxiong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5052103501 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2078-9056 |
| authorships[5].author.display_name | Wenqiang Wei |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Wei, Wenqiang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5066864248 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Jie Hu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hu, Jie |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5044995870 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8260-3259 |
| authorships[7].author.display_name | Zheng Xie |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xie, Zipeng |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5113013369 |
| authorships[8].author.orcid | https://orcid.org/0009-0002-8787-8192 |
| authorships[8].author.display_name | Zhiyu Li |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Li, Zhiyu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5090294171 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-1456-2202 |
| authorships[9].author.display_name | Feiyu Xiong |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Xiong, Feiyu |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5044341587 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-6969-7764 |
| authorships[10].author.display_name | Edward Chung |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Chung, Edward |
| authorships[10].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.19743 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Token-level Accept or Reject: A Micro Alignment Approach for Large Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9634000062942505 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.19743 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.19743 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.19743 |
| primary_location.id | pmh:oai:arXiv.org:2505.19743 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.19743 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.19743 |
| publication_date | 2025-05-26 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 85 |
| abstract_inverted_index.To | 51 |
| abstract_inverted_index.as | 30, 98 |
| abstract_inverted_index.at | 135, 143 |
| abstract_inverted_index.by | 75 |
| abstract_inverted_index.in | 45, 119 |
| abstract_inverted_index.is | 17 |
| abstract_inverted_index.of | 4, 42, 66, 100 |
| abstract_inverted_index.on | 38 |
| abstract_inverted_index.or | 32, 96 |
| abstract_inverted_index.to | 19, 63 |
| abstract_inverted_index.we | 54 |
| abstract_inverted_index.DPO | 33 |
| abstract_inverted_index.The | 126 |
| abstract_inverted_index.and | 15, 22, 49, 109, 129, 137 |
| abstract_inverted_index.are | 94, 132, 141 |
| abstract_inverted_index.the | 1, 67, 72, 101, 138 |
| abstract_inverted_index.LLMs | 39, 108 |
| abstract_inverted_index.MARA | 70, 115 |
| abstract_inverted_index.RLHF | 31 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.code | 128 |
| abstract_inverted_index.into | 80 |
| abstract_inverted_index.part | 99 |
| abstract_inverted_index.safe | 23 |
| abstract_inverted_index.show | 113 |
| abstract_inverted_index.such | 29 |
| abstract_inverted_index.that | 114 |
| abstract_inverted_index.with | 12, 40 |
| abstract_inverted_index.Large | 5 |
| abstract_inverted_index.Micro | 56 |
| abstract_inverted_index.costs | 48 |
| abstract_inverted_index.human | 13 |
| abstract_inverted_index.often | 34 |
| abstract_inverted_index.rapid | 2 |
| abstract_inverted_index.seven | 106 |
| abstract_inverted_index.these | 10 |
| abstract_inverted_index.this, | 53 |
| abstract_inverted_index.three | 110 |
| abstract_inverted_index.where | 84 |
| abstract_inverted_index.while | 122 |
| abstract_inverted_index.(MARA) | 60 |
| abstract_inverted_index.Models | 7 |
| abstract_inverted_index.across | 105 |
| abstract_inverted_index.binary | 82 |
| abstract_inverted_index.costs. | 125 |
| abstract_inverted_index.direct | 36 |
| abstract_inverted_index.models | 11, 140 |
| abstract_inverted_index.source | 127 |
| abstract_inverted_index.tokens | 93 |
| abstract_inverted_index.values | 16 |
| abstract_inverted_index.(LLMs), | 8 |
| abstract_inverted_index.address | 52 |
| abstract_inverted_index.compact | 86 |
| abstract_inverted_index.details | 131 |
| abstract_inverted_index.ethical | 21 |
| abstract_inverted_index.models. | 69 |
| abstract_inverted_index.network | 89 |
| abstract_inverted_index.operate | 64 |
| abstract_inverted_index.process | 74 |
| abstract_inverted_index.propose | 55 |
| abstract_inverted_index.require | 35 |
| abstract_inverted_index.trained | 139 |
| abstract_inverted_index.whether | 91 |
| abstract_inverted_index.Aligning | 59 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.Language | 6 |
| abstract_inverted_index.achieves | 116 |
| abstract_inverted_index.aligning | 9 |
| abstract_inverted_index.approach | 61 |
| abstract_inverted_index.billions | 41 |
| abstract_inverted_index.critical | 18 |
| abstract_inverted_index.datasets | 112 |
| abstract_inverted_index.designed | 62 |
| abstract_inverted_index.ensuring | 20 |
| abstract_inverted_index.existing | 26 |
| abstract_inverted_index.language | 68 |
| abstract_inverted_index.learning | 79 |
| abstract_inverted_index.publicly | 133 |
| abstract_inverted_index.reducing | 123 |
| abstract_inverted_index.released | 142 |
| abstract_inverted_index.Extensive | 103 |
| abstract_inverted_index.alignment | 27, 73, 120 |
| abstract_inverted_index.available | 134 |
| abstract_inverted_index.candidate | 92 |
| abstract_inverted_index.different | 107 |
| abstract_inverted_index.response. | 102 |
| abstract_inverted_index.resulting | 44 |
| abstract_inverted_index."Accepted" | 95 |
| abstract_inverted_index."Rejected" | 97 |
| abstract_inverted_index.determines | 90 |
| abstract_inverted_index.preference | 78 |
| abstract_inverted_index.simplifies | 71 |
| abstract_inverted_index.techniques | 28 |
| abstract_inverted_index.decomposing | 76 |
| abstract_inverted_index.development | 3 |
| abstract_inverted_index.experiments | 104 |
| abstract_inverted_index.fine-tuning | 37 |
| abstract_inverted_index.open-source | 111 |
| abstract_inverted_index.parameters, | 43 |
| abstract_inverted_index.performance | 121 |
| abstract_inverted_index.preferences | 14 |
| abstract_inverted_index.significant | 117 |
| abstract_inverted_index.substantial | 46 |
| abstract_inverted_index.three-layer | 87 |
| abstract_inverted_index.token-level | 57, 81 |
| abstract_inverted_index.improvements | 118 |
| abstract_inverted_index.Accept-Reject | 58 |
| abstract_inverted_index.applications. | 24 |
| abstract_inverted_index.computational | 47, 124 |
| abstract_inverted_index.independently | 65 |
| abstract_inverted_index.implementation | 130 |
| abstract_inverted_index.sentence-level | 77 |
| abstract_inverted_index.classification, | 83 |
| abstract_inverted_index.fully-connected | 88 |
| abstract_inverted_index.inefficiencies. | 50 |
| abstract_inverted_index.https://github.com/IAAR-Shanghai/MARA, | 136 |
| abstract_inverted_index.https://huggingface.co/IAAR-Shanghai/MARA_AGENTS. | 144 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile |