Token Mixing for Breast Cancer Diagnosis: Pre-Trained MLP-Mixer Models on Mammograms Article Swipe
Hosameldin Ahmed
,
Asoke K. Nandi
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3586139
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3586139
Data Access Statement: In this study, we use three publicly available datasets: MIAS (Mammographic Image Analysis Society database) (https://www.repository.cam.ac.uk/items/b6a97f0c-3b9b-40ad-8f18-3d121eef1459), CBIS-DDSM (Curated Breast Imaging Subset of the Digital Database for Screening Mammography) (https://www.cancerimagingarchive.net/collection/cbis-ddsm/), and INbreast (https://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database).
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3586139
- OA Status
- gold
- Cited By
- 1
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412164066
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412164066Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3586139Digital Object Identifier
- Title
-
Token Mixing for Breast Cancer Diagnosis: Pre-Trained MLP-Mixer Models on MammogramsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Hosameldin Ahmed, Asoke K. NandiList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3586139Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3586139Direct OA link when available
- Concepts
-
Computer science, Mixing (physics), Security token, Breast cancer, Mammography, Cancer, Speech recognition, Artificial intelligence, Medicine, Computer network, Internal medicine, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412164066 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3586139 |
| ids.doi | https://doi.org/10.1109/access.2025.3586139 |
| ids.openalex | https://openalex.org/W4412164066 |
| fwci | 4.81974515 |
| type | article |
| title | Token Mixing for Breast Cancer Diagnosis: Pre-Trained MLP-Mixer Models on Mammograms |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 120208 |
| biblio.first_page | 120190 |
| grants[0].funder | https://openalex.org/F4320324766 |
| grants[0].award_id | |
| grants[0].funder_display_name | Brunel University London |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T10885 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Gene expression and cancer classification |
| topics[2].id | https://openalex.org/T12859 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9713000059127808 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1304 |
| topics[2].subfield.display_name | Biophysics |
| topics[2].display_name | Cell Image Analysis Techniques |
| funders[0].id | https://openalex.org/F4320324766 |
| funders[0].ror | https://ror.org/00dn4t376 |
| funders[0].display_name | Brunel University London |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6398995518684387 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C138777275 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5710105895996094 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6884054 |
| concepts[1].display_name | Mixing (physics) |
| concepts[2].id | https://openalex.org/C48145219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5481489300727844 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[2].display_name | Security token |
| concepts[3].id | https://openalex.org/C530470458 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5296796560287476 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[3].display_name | Breast cancer |
| concepts[4].id | https://openalex.org/C2780472235 |
| concepts[4].level | 4 |
| concepts[4].score | 0.4210205674171448 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q324634 |
| concepts[4].display_name | Mammography |
| concepts[5].id | https://openalex.org/C121608353 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4045097529888153 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[5].display_name | Cancer |
| concepts[6].id | https://openalex.org/C28490314 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3499181568622589 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[6].display_name | Speech recognition |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3248431384563446 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.22841876745224 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C31258907 |
| concepts[9].level | 1 |
| concepts[9].score | 0.19251486659049988 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[9].display_name | Computer network |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.13736888766288757 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6398995518684387 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/mixing |
| keywords[1].score | 0.5710105895996094 |
| keywords[1].display_name | Mixing (physics) |
| keywords[2].id | https://openalex.org/keywords/security-token |
| keywords[2].score | 0.5481489300727844 |
| keywords[2].display_name | Security token |
| keywords[3].id | https://openalex.org/keywords/breast-cancer |
| keywords[3].score | 0.5296796560287476 |
| keywords[3].display_name | Breast cancer |
| keywords[4].id | https://openalex.org/keywords/mammography |
| keywords[4].score | 0.4210205674171448 |
| keywords[4].display_name | Mammography |
| keywords[5].id | https://openalex.org/keywords/cancer |
| keywords[5].score | 0.4045097529888153 |
| keywords[5].display_name | Cancer |
| keywords[6].id | https://openalex.org/keywords/speech-recognition |
| keywords[6].score | 0.3499181568622589 |
| keywords[6].display_name | Speech recognition |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.3248431384563446 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.22841876745224 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/computer-network |
| keywords[9].score | 0.19251486659049988 |
| keywords[9].display_name | Computer network |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.13736888766288757 |
| keywords[10].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3586139 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3586139 |
| locations[1].id | pmh:oai:doaj.org/article:b4a7cbe016f64cbc98a1a84136f34cd0 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 120190-120208 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/b4a7cbe016f64cbc98a1a84136f34cd0 |
| locations[2].id | pmh:oai:bura.brunel.ac.uk:2438/31825 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401473 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Brunel University Research Archive (BURA) (Brunel University London) |
| locations[2].source.host_organization | https://openalex.org/I59433898 |
| locations[2].source.host_organization_name | Brunel University of London |
| locations[2].source.host_organization_lineage | https://openalex.org/I59433898 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://orcid.org/0000-0002-8523-1099 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5042560374 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8523-1099 |
| authorships[0].author.display_name | Hosameldin Ahmed |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I124357947, https://openalex.org/I59433898 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electronic and Electrical Engineering, Brunel University of London, Uxbridge, U.K. |
| authorships[0].institutions[0].id | https://openalex.org/I59433898 |
| authorships[0].institutions[0].ror | https://ror.org/00dn4t376 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59433898 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Brunel University of London |
| authorships[0].institutions[1].id | https://openalex.org/I124357947 |
| authorships[0].institutions[1].ror | https://ror.org/04cw6st05 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I124357947 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | University of London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hosameldin O. A. Ahmed |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electronic and Electrical Engineering, Brunel University of London, Uxbridge, U.K. |
| authorships[1].author.id | https://openalex.org/A5010643037 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6248-2875 |
| authorships[1].author.display_name | Asoke K. Nandi |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I124357947, https://openalex.org/I59433898 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronic and Electrical Engineering, Brunel University of London, Uxbridge, U.K. |
| authorships[1].institutions[0].id | https://openalex.org/I59433898 |
| authorships[1].institutions[0].ror | https://ror.org/00dn4t376 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59433898 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Brunel University of London |
| authorships[1].institutions[1].id | https://openalex.org/I124357947 |
| authorships[1].institutions[1].ror | https://ror.org/04cw6st05 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I124357947 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | University of London |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Asoke K. Nandi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronic and Electrical Engineering, Brunel University of London, Uxbridge, U.K. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3586139 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Token Mixing for Breast Cancer Diagnosis: Pre-Trained MLP-Mixer Models on Mammograms |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W4388335561, https://openalex.org/W2970530566, https://openalex.org/W4288261899, https://openalex.org/W4307309205, https://openalex.org/W2967478618, https://openalex.org/W4385009901, https://openalex.org/W4385572700, https://openalex.org/W2997152889, https://openalex.org/W4285141722 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/access.2025.3586139 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3586139 |
| primary_location.id | doi:10.1109/access.2025.3586139 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3586139 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2899161510, https://openalex.org/W2762285338, https://openalex.org/W4300690596, https://openalex.org/W3109510743, https://openalex.org/W3094475019, https://openalex.org/W2115947304, https://openalex.org/W2143559692, https://openalex.org/W4400273670, https://openalex.org/W2949956461, https://openalex.org/W3197840494, https://openalex.org/W4307942371, https://openalex.org/W4380874558, https://openalex.org/W2101771332, https://openalex.org/W2120580182, https://openalex.org/W4200492002, https://openalex.org/W4400390699, https://openalex.org/W2773642388, https://openalex.org/W4386587257, https://openalex.org/W2035526062, https://openalex.org/W2078358607, https://openalex.org/W2059902090, https://openalex.org/W2111383637, https://openalex.org/W2081237931, https://openalex.org/W2159387984, https://openalex.org/W1978150416, https://openalex.org/W2132120643, https://openalex.org/W2106258330, https://openalex.org/W2948732750, https://openalex.org/W3127426043, https://openalex.org/W4402770349, https://openalex.org/W2962858109, https://openalex.org/W6737947904, https://openalex.org/W4403864385, https://openalex.org/W4388916299, https://openalex.org/W6795140394, https://openalex.org/W4294631107, https://openalex.org/W6796417832, https://openalex.org/W2776937175, https://openalex.org/W41027960, https://openalex.org/W304373761, https://openalex.org/W6725757660, https://openalex.org/W4313855806, https://openalex.org/W4396629597, https://openalex.org/W4285297040, https://openalex.org/W2070644180, https://openalex.org/W3163936961, https://openalex.org/W3031405215, https://openalex.org/W1998865404, https://openalex.org/W4287887876, https://openalex.org/W3203686404, https://openalex.org/W3148831051, https://openalex.org/W4224302765, https://openalex.org/W2783710041, https://openalex.org/W2510300688 |
| referenced_works_count | 54 |
| abstract_inverted_index.In | 3 |
| abstract_inverted_index.of | 24 |
| abstract_inverted_index.we | 6 |
| abstract_inverted_index.and | 32 |
| abstract_inverted_index.for | 28 |
| abstract_inverted_index.the | 25 |
| abstract_inverted_index.use | 7 |
| abstract_inverted_index.Data | 0 |
| abstract_inverted_index.MIAS | 12 |
| abstract_inverted_index.this | 4 |
| abstract_inverted_index.Image | 14 |
| abstract_inverted_index.three | 8 |
| abstract_inverted_index.Access | 1 |
| abstract_inverted_index.Breast | 21 |
| abstract_inverted_index.Subset | 23 |
| abstract_inverted_index.study, | 5 |
| abstract_inverted_index.Digital | 26 |
| abstract_inverted_index.Imaging | 22 |
| abstract_inverted_index.Society | 16 |
| abstract_inverted_index.(Curated | 20 |
| abstract_inverted_index.Analysis | 15 |
| abstract_inverted_index.Database | 27 |
| abstract_inverted_index.INbreast | 33 |
| abstract_inverted_index.publicly | 9 |
| abstract_inverted_index.CBIS-DDSM | 19 |
| abstract_inverted_index.Screening | 29 |
| abstract_inverted_index.available | 10 |
| abstract_inverted_index.database) | 17 |
| abstract_inverted_index.datasets: | 11 |
| abstract_inverted_index.Statement: | 2 |
| abstract_inverted_index.Mammography) | 30 |
| abstract_inverted_index.(Mammographic | 13 |
| abstract_inverted_index.(https://www.cancerimagingarchive.net/collection/cbis-ddsm/), | 31 |
| abstract_inverted_index.(https://www.repository.cam.ac.uk/items/b6a97f0c-3b9b-40ad-8f18-3d121eef1459), | 18 |
| abstract_inverted_index.(https://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database). | 34 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.95630658 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |