Tooth segmentation in panoramic dental radiographs using deep convolution neural network -Insights from subjective analysis Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s42452-025-06606-0
In the last few years, dentistry has witnessed a phenomenal advancement in artificial intelligence. The importance of teeth segmentation in dental radiographs has increased since it enables medical practitioners to conduct examinations more precisely and accurately in dentistry and helps them develop the most effective treatment strategy for their patients. In this research work, TUFT and UFBA dental data sets have been combined and used to train UNet, UNet ++ with ResNet 50 pre-trained model, UNet with mobileNet as encoder, and Deeplabv2 models for teeth segmentation. Evaluation of their performance in teeth segmentation using panoramic dental radiographs is carried out. Also, a subjective analysis of the model’s predicted mask output from the practitioners is carried out. UNet++ with the combined data set and after fine-tunning hyperparameter gives the best results (IOU 0.8619 and Dice coefficient 0.9258). Also, it is observed that the use of the post-processing technique, ’Residual dense spatial-asymmetric attention’ for deblurring the output images improved the result. According to the findings of the subjective study, the practitioner’s satisfaction index is 4.2 on a scale of 5, which emphasizes the need for practitioners feedback in model building to ensure the clinical usability of the proposed system.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s42452-025-06606-0
- OA Status
- diamond
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409054257
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409054257Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s42452-025-06606-0Digital Object Identifier
- Title
-
Tooth segmentation in panoramic dental radiographs using deep convolution neural network -Insights from subjective analysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-31Full publication date if available
- Authors
-
Suvarna Bhat, Gajanan K. Birajdar, Mukesh D. PatilList of authors in order
- Landing page
-
https://doi.org/10.1007/s42452-025-06606-0Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1007/s42452-025-06606-0Direct OA link when available
- Concepts
-
Segmentation, Orthodontics, Artificial intelligence, Convolutional neural network, Radiography, Convolution (computer science), Computer science, Dentistry, Artificial neural network, Computer vision, Medicine, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409054257 |
|---|---|
| doi | https://doi.org/10.1007/s42452-025-06606-0 |
| ids.doi | https://doi.org/10.1007/s42452-025-06606-0 |
| ids.openalex | https://openalex.org/W4409054257 |
| fwci | 0.0 |
| type | article |
| title | Tooth segmentation in panoramic dental radiographs using deep convolution neural network -Insights from subjective analysis |
| biblio.issue | 4 |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11363 |
| topics[0].field.id | https://openalex.org/fields/35 |
| topics[0].field.display_name | Dentistry |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3504 |
| topics[0].subfield.display_name | Oral Surgery |
| topics[0].display_name | Dental Radiography and Imaging |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9900000095367432 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9692000150680542 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6357685327529907 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C29694066 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5775460600852966 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q118301 |
| concepts[1].display_name | Orthodontics |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5635735988616943 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5481536388397217 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C36454342 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5287594199180603 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245341 |
| concepts[4].display_name | Radiography |
| concepts[5].id | https://openalex.org/C45347329 |
| concepts[5].level | 3 |
| concepts[5].score | 0.48836514353752136 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[5].display_name | Convolution (computer science) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4821414649486542 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C199343813 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4820074141025543 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12128 |
| concepts[7].display_name | Dentistry |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3698623776435852 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33814799785614014 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.3154410123825073 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C126838900 |
| concepts[11].level | 1 |
| concepts[11].score | 0.09965541958808899 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[11].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.6357685327529907 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/orthodontics |
| keywords[1].score | 0.5775460600852966 |
| keywords[1].display_name | Orthodontics |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5635735988616943 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5481536388397217 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/radiography |
| keywords[4].score | 0.5287594199180603 |
| keywords[4].display_name | Radiography |
| keywords[5].id | https://openalex.org/keywords/convolution |
| keywords[5].score | 0.48836514353752136 |
| keywords[5].display_name | Convolution (computer science) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4821414649486542 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/dentistry |
| keywords[7].score | 0.4820074141025543 |
| keywords[7].display_name | Dentistry |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.3698623776435852 |
| keywords[8].display_name | Artificial neural network |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.33814799785614014 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.3154410123825073 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/radiology |
| keywords[11].score | 0.09965541958808899 |
| keywords[11].display_name | Radiology |
| language | en |
| locations[0].id | doi:10.1007/s42452-025-06606-0 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407042868 |
| locations[0].source.issn | 3004-9261 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 3004-9261 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Discover Applied Sciences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Discover Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.1007/s42452-025-06606-0 |
| locations[1].id | pmh:oai:doaj.org/article:6a7f477acac94bcf842a7fcafd3decf2 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Discover Applied Sciences, Vol 7, Iss 4, Pp 1-18 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/6a7f477acac94bcf842a7fcafd3decf2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5014779819 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Suvarna Bhat |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Suvarna Bhat |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026695021 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3531-3958 |
| authorships[1].author.display_name | Gajanan K. Birajdar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gajanan K. Birajdar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5079585408 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0232-723X |
| authorships[2].author.display_name | Mukesh D. Patil |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mukesh D. Patil |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1007/s42452-025-06606-0 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Tooth segmentation in panoramic dental radiographs using deep convolution neural network -Insights from subjective analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11363 |
| primary_topic.field.id | https://openalex.org/fields/35 |
| primary_topic.field.display_name | Dentistry |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3504 |
| primary_topic.subfield.display_name | Oral Surgery |
| primary_topic.display_name | Dental Radiography and Imaging |
| related_works | https://openalex.org/W4391621807, https://openalex.org/W4321487865, https://openalex.org/W4313906399, https://openalex.org/W4391621790, https://openalex.org/W4239306820, https://openalex.org/W4391266461, https://openalex.org/W2590798552, https://openalex.org/W2811106690, https://openalex.org/W2964954556, https://openalex.org/W2890372105 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s42452-025-06606-0 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407042868 |
| best_oa_location.source.issn | 3004-9261 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 3004-9261 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Discover Applied Sciences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Discover Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s42452-025-06606-0 |
| primary_location.id | doi:10.1007/s42452-025-06606-0 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407042868 |
| primary_location.source.issn | 3004-9261 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 3004-9261 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Discover Applied Sciences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Discover Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.1007/s42452-025-06606-0 |
| publication_date | 2025-03-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2918471352, https://openalex.org/W2138964704, https://openalex.org/W3107368451, https://openalex.org/W3016417837, https://openalex.org/W3080289304, https://openalex.org/W2951037649, https://openalex.org/W4382406936, https://openalex.org/W2883741661, https://openalex.org/W3090677822, https://openalex.org/W2962895999, https://openalex.org/W2528709620, https://openalex.org/W2986413572, https://openalex.org/W4280612376, https://openalex.org/W4306158096, https://openalex.org/W4313260660, https://openalex.org/W4226453196, https://openalex.org/W3202722194, https://openalex.org/W1901129140, https://openalex.org/W2884436604, https://openalex.org/W1980456897, https://openalex.org/W2963163009, https://openalex.org/W2964309882, https://openalex.org/W4381948601, https://openalex.org/W3120180056, https://openalex.org/W3096898300 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 9, 102, 175 |
| abstract_inverted_index.++ | 70 |
| abstract_inverted_index.5, | 178 |
| abstract_inverted_index.50 | 73 |
| abstract_inverted_index.In | 1, 51 |
| abstract_inverted_index.as | 79 |
| abstract_inverted_index.in | 12, 20, 37, 91, 186 |
| abstract_inverted_index.is | 98, 114, 139, 172 |
| abstract_inverted_index.it | 26, 138 |
| abstract_inverted_index.of | 17, 88, 105, 144, 164, 177, 194 |
| abstract_inverted_index.on | 174 |
| abstract_inverted_index.to | 30, 66, 161, 189 |
| abstract_inverted_index.4.2 | 173 |
| abstract_inverted_index.The | 15 |
| abstract_inverted_index.and | 35, 39, 56, 64, 81, 123, 133 |
| abstract_inverted_index.few | 4 |
| abstract_inverted_index.for | 48, 84, 152, 183 |
| abstract_inverted_index.has | 7, 23 |
| abstract_inverted_index.set | 122 |
| abstract_inverted_index.the | 2, 43, 106, 112, 119, 128, 142, 145, 154, 158, 162, 165, 168, 181, 191, 195 |
| abstract_inverted_index.use | 143 |
| abstract_inverted_index.(IOU | 131 |
| abstract_inverted_index.Dice | 134 |
| abstract_inverted_index.TUFT | 55 |
| abstract_inverted_index.UFBA | 57 |
| abstract_inverted_index.UNet | 69, 76 |
| abstract_inverted_index.been | 62 |
| abstract_inverted_index.best | 129 |
| abstract_inverted_index.data | 59, 121 |
| abstract_inverted_index.from | 111 |
| abstract_inverted_index.have | 61 |
| abstract_inverted_index.last | 3 |
| abstract_inverted_index.mask | 109 |
| abstract_inverted_index.more | 33 |
| abstract_inverted_index.most | 44 |
| abstract_inverted_index.need | 182 |
| abstract_inverted_index.out. | 100, 116 |
| abstract_inverted_index.sets | 60 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.them | 41 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.used | 65 |
| abstract_inverted_index.with | 71, 77, 118 |
| abstract_inverted_index.Also, | 101, 137 |
| abstract_inverted_index.UNet, | 68 |
| abstract_inverted_index.after | 124 |
| abstract_inverted_index.dense | 149 |
| abstract_inverted_index.gives | 127 |
| abstract_inverted_index.helps | 40 |
| abstract_inverted_index.index | 171 |
| abstract_inverted_index.model | 187 |
| abstract_inverted_index.scale | 176 |
| abstract_inverted_index.since | 25 |
| abstract_inverted_index.teeth | 18, 85, 92 |
| abstract_inverted_index.their | 49, 89 |
| abstract_inverted_index.train | 67 |
| abstract_inverted_index.using | 94 |
| abstract_inverted_index.which | 179 |
| abstract_inverted_index.work, | 54 |
| abstract_inverted_index.0.8619 | 132 |
| abstract_inverted_index.ResNet | 72 |
| abstract_inverted_index.UNet++ | 117 |
| abstract_inverted_index.dental | 21, 58, 96 |
| abstract_inverted_index.ensure | 190 |
| abstract_inverted_index.images | 156 |
| abstract_inverted_index.model, | 75 |
| abstract_inverted_index.models | 83 |
| abstract_inverted_index.output | 110, 155 |
| abstract_inverted_index.study, | 167 |
| abstract_inverted_index.years, | 5 |
| abstract_inverted_index.carried | 99, 115 |
| abstract_inverted_index.conduct | 31 |
| abstract_inverted_index.develop | 42 |
| abstract_inverted_index.enables | 27 |
| abstract_inverted_index.medical | 28 |
| abstract_inverted_index.result. | 159 |
| abstract_inverted_index.results | 130 |
| abstract_inverted_index.system. | 197 |
| abstract_inverted_index.0.9258). | 136 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.analysis | 104 |
| abstract_inverted_index.building | 188 |
| abstract_inverted_index.clinical | 192 |
| abstract_inverted_index.combined | 63, 120 |
| abstract_inverted_index.encoder, | 80 |
| abstract_inverted_index.feedback | 185 |
| abstract_inverted_index.findings | 163 |
| abstract_inverted_index.improved | 157 |
| abstract_inverted_index.observed | 140 |
| abstract_inverted_index.proposed | 196 |
| abstract_inverted_index.research | 53 |
| abstract_inverted_index.strategy | 47 |
| abstract_inverted_index.According | 160 |
| abstract_inverted_index.Deeplabv2 | 82 |
| abstract_inverted_index.dentistry | 6, 38 |
| abstract_inverted_index.effective | 45 |
| abstract_inverted_index.increased | 24 |
| abstract_inverted_index.mobileNet | 78 |
| abstract_inverted_index.model’s | 107 |
| abstract_inverted_index.panoramic | 95 |
| abstract_inverted_index.patients. | 50 |
| abstract_inverted_index.precisely | 34 |
| abstract_inverted_index.predicted | 108 |
| abstract_inverted_index.treatment | 46 |
| abstract_inverted_index.usability | 193 |
| abstract_inverted_index.witnessed | 8 |
| abstract_inverted_index.Evaluation | 87 |
| abstract_inverted_index.accurately | 36 |
| abstract_inverted_index.artificial | 13 |
| abstract_inverted_index.deblurring | 153 |
| abstract_inverted_index.emphasizes | 180 |
| abstract_inverted_index.importance | 16 |
| abstract_inverted_index.phenomenal | 10 |
| abstract_inverted_index.subjective | 103, 166 |
| abstract_inverted_index.technique, | 147 |
| abstract_inverted_index.advancement | 11 |
| abstract_inverted_index.coefficient | 135 |
| abstract_inverted_index.performance | 90 |
| abstract_inverted_index.pre-trained | 74 |
| abstract_inverted_index.radiographs | 22, 97 |
| abstract_inverted_index.’Residual | 148 |
| abstract_inverted_index.attention’ | 151 |
| abstract_inverted_index.examinations | 32 |
| abstract_inverted_index.fine-tunning | 125 |
| abstract_inverted_index.satisfaction | 170 |
| abstract_inverted_index.segmentation | 19, 93 |
| abstract_inverted_index.intelligence. | 14 |
| abstract_inverted_index.practitioners | 29, 113, 184 |
| abstract_inverted_index.segmentation. | 86 |
| abstract_inverted_index.hyperparameter | 126 |
| abstract_inverted_index.post-processing | 146 |
| abstract_inverted_index.practitioner’s | 169 |
| abstract_inverted_index.spatial-asymmetric | 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.14267597 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |