Top-k Relevant Semantic Place Retrieval on Spatial RDF Data Article Swipe
YOU?
·
· 2016
· Open Access
·
· DOI: https://doi.org/10.1145/2882903.2882941
RDF data are traditionally accessed using structured query languages, such as SPARQL. However, this requires users to understand the language as well as the RDF schema. Keyword search on RDF data aims at relieving the user from these requirements; the user only inputs a set of keywords and the goal is to find small RDF subgraphs which contain all keywords. At the same time, popular RDF knowledge bases also include spatial semantics, which opens the road to location-based search operations. In this work, we propose and study a novel location-based keyword search query on RDF data. The objective of top-κ relevant semantic places (κSP) retrieval is to find RDF subgraphs which contain the query keywords and are rooted at spatial entities close to the query location. The novelty of κSP queries is that they are location-aware and that they do not rely on the use of structured query languages. We design a basic method for the processing of κSP queries. To further accelerate κSP retrieval, two pruning approaches and a data preprocessing technique are proposed. Extensive empirical studies on two real datasets demonstrate the superior and robust performance of our proposals compared to the basic method. © 2016 ACM.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/2882903.2882941
- OA Status
- green
- Cited By
- 25
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2423816654
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2423816654Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/2882903.2882941Digital Object Identifier
- Title
-
Top-k Relevant Semantic Place Retrieval on Spatial RDF DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2016Year of publication
- Publication date
-
2016-06-16Full publication date if available
- Authors
-
J. Y. Shi, Dingming Wu, Nikos MamoulisList of authors in order
- Landing page
-
https://doi.org/10.1145/2882903.2882941Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://zenodo.org/record/3507782Direct OA link when available
- Concepts
-
Computer science, SPARQL, RDF, Information retrieval, RDF query language, RDF Schema, RDF/XML, Simple Knowledge Organization System, Query language, Cwm, Web search query, Web query classification, Semantic Web, Search engineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
25Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3, 2023: 4, 2021: 4, 2020: 3, 2019: 5Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2423816654 |
|---|---|
| doi | https://doi.org/10.1145/2882903.2882941 |
| ids.doi | https://doi.org/10.1145/2882903.2882941 |
| ids.mag | 2423816654 |
| ids.openalex | https://openalex.org/W2423816654 |
| fwci | 2.61922157 |
| type | article |
| title | Top-k Relevant Semantic Place Retrieval on Spatial RDF Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1990 |
| biblio.first_page | 1977 |
| topics[0].id | https://openalex.org/T11106 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Data Management and Algorithms |
| topics[1].id | https://openalex.org/T10757 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3305 |
| topics[1].subfield.display_name | Geography, Planning and Development |
| topics[1].display_name | Geographic Information Systems Studies |
| topics[2].id | https://openalex.org/T10317 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9882000088691711 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Advanced Database Systems and Queries |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8633399605751038 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C41009113 |
| concepts[1].level | 4 |
| concepts[1].score | 0.8434848785400391 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q54871 |
| concepts[1].display_name | SPARQL |
| concepts[2].id | https://openalex.org/C147497476 |
| concepts[2].level | 3 |
| concepts[2].score | 0.8125183582305908 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q54872 |
| concepts[2].display_name | RDF |
| concepts[3].id | https://openalex.org/C23123220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7979015111923218 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[3].display_name | Information retrieval |
| concepts[4].id | https://openalex.org/C96956885 |
| concepts[4].level | 5 |
| concepts[4].score | 0.7507418394088745 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6138701 |
| concepts[4].display_name | RDF query language |
| concepts[5].id | https://openalex.org/C15657843 |
| concepts[5].level | 5 |
| concepts[5].score | 0.7414022088050842 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1751819 |
| concepts[5].display_name | RDF Schema |
| concepts[6].id | https://openalex.org/C78923513 |
| concepts[6].level | 5 |
| concepts[6].score | 0.6540801525115967 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2115 |
| concepts[6].display_name | RDF/XML |
| concepts[7].id | https://openalex.org/C29321653 |
| concepts[7].level | 5 |
| concepts[7].score | 0.6281004548072815 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2288360 |
| concepts[7].display_name | Simple Knowledge Organization System |
| concepts[8].id | https://openalex.org/C192028432 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4984323978424072 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q845739 |
| concepts[8].display_name | Query language |
| concepts[9].id | https://openalex.org/C157595922 |
| concepts[9].level | 5 |
| concepts[9].score | 0.41503381729125977 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q50745537 |
| concepts[9].display_name | Cwm |
| concepts[10].id | https://openalex.org/C164120249 |
| concepts[10].level | 3 |
| concepts[10].score | 0.3583313524723053 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q995982 |
| concepts[10].display_name | Web search query |
| concepts[11].id | https://openalex.org/C118689300 |
| concepts[11].level | 4 |
| concepts[11].score | 0.30253294110298157 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7978614 |
| concepts[11].display_name | Web query classification |
| concepts[12].id | https://openalex.org/C2129575 |
| concepts[12].level | 2 |
| concepts[12].score | 0.23862090706825256 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q54837 |
| concepts[12].display_name | Semantic Web |
| concepts[13].id | https://openalex.org/C97854310 |
| concepts[13].level | 2 |
| concepts[13].score | 0.14873725175857544 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q19541 |
| concepts[13].display_name | Search engine |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8633399605751038 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/sparql |
| keywords[1].score | 0.8434848785400391 |
| keywords[1].display_name | SPARQL |
| keywords[2].id | https://openalex.org/keywords/rdf |
| keywords[2].score | 0.8125183582305908 |
| keywords[2].display_name | RDF |
| keywords[3].id | https://openalex.org/keywords/information-retrieval |
| keywords[3].score | 0.7979015111923218 |
| keywords[3].display_name | Information retrieval |
| keywords[4].id | https://openalex.org/keywords/rdf-query-language |
| keywords[4].score | 0.7507418394088745 |
| keywords[4].display_name | RDF query language |
| keywords[5].id | https://openalex.org/keywords/rdf-schema |
| keywords[5].score | 0.7414022088050842 |
| keywords[5].display_name | RDF Schema |
| keywords[6].id | https://openalex.org/keywords/rdf/xml |
| keywords[6].score | 0.6540801525115967 |
| keywords[6].display_name | RDF/XML |
| keywords[7].id | https://openalex.org/keywords/simple-knowledge-organization-system |
| keywords[7].score | 0.6281004548072815 |
| keywords[7].display_name | Simple Knowledge Organization System |
| keywords[8].id | https://openalex.org/keywords/query-language |
| keywords[8].score | 0.4984323978424072 |
| keywords[8].display_name | Query language |
| keywords[9].id | https://openalex.org/keywords/cwm |
| keywords[9].score | 0.41503381729125977 |
| keywords[9].display_name | Cwm |
| keywords[10].id | https://openalex.org/keywords/web-search-query |
| keywords[10].score | 0.3583313524723053 |
| keywords[10].display_name | Web search query |
| keywords[11].id | https://openalex.org/keywords/web-query-classification |
| keywords[11].score | 0.30253294110298157 |
| keywords[11].display_name | Web query classification |
| keywords[12].id | https://openalex.org/keywords/semantic-web |
| keywords[12].score | 0.23862090706825256 |
| keywords[12].display_name | Semantic Web |
| keywords[13].id | https://openalex.org/keywords/search-engine |
| keywords[13].score | 0.14873725175857544 |
| keywords[13].display_name | Search engine |
| language | en |
| locations[0].id | doi:10.1145/2882903.2882941 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2016 International Conference on Management of Data |
| locations[0].landing_page_url | https://doi.org/10.1145/2882903.2882941 |
| locations[1].id | pmh:oai:hub.hku.hk:10722/229721 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196271 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | The HKU Scholars Hub (University of Hong Kong) |
| locations[1].source.host_organization | https://openalex.org/I889458895 |
| locations[1].source.host_organization_name | University of Hong Kong |
| locations[1].source.host_organization_lineage | https://openalex.org/I889458895 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference_Paper |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10722/229721 |
| locations[2].id | pmh:oai:zenodo.org:3507782 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400562 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/conferencePaper |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://zenodo.org/record/3507782 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007796732 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0465-1551 |
| authorships[0].author.display_name | J. Y. Shi |
| authorships[0].countries | HK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I889458895 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Hong Kong, Hong Kong, China |
| authorships[0].institutions[0].id | https://openalex.org/I889458895 |
| authorships[0].institutions[0].ror | https://ror.org/02zhqgq86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I889458895 |
| authorships[0].institutions[0].country_code | HK |
| authorships[0].institutions[0].display_name | University of Hong Kong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jieming Shi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Hong Kong, Hong Kong, China |
| authorships[1].author.id | https://openalex.org/A5102013176 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7901-9876 |
| authorships[1].author.display_name | Dingming Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I180726961 |
| authorships[1].affiliations[0].raw_affiliation_string | Shenzhen University, Shenzhen, China |
| authorships[1].institutions[0].id | https://openalex.org/I180726961 |
| authorships[1].institutions[0].ror | https://ror.org/01vy4gh70 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I180726961 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shenzhen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dingming Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shenzhen University, Shenzhen, China |
| authorships[2].author.id | https://openalex.org/A5045731304 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Nikos Mamoulis |
| authorships[2].countries | GR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I194019607 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Ioannina, Ioannina, Greece |
| authorships[2].institutions[0].id | https://openalex.org/I194019607 |
| authorships[2].institutions[0].ror | https://ror.org/01qg3j183 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I194019607 |
| authorships[2].institutions[0].country_code | GR |
| authorships[2].institutions[0].display_name | University of Ioannina |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Nikos Mamoulis |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Ioannina, Ioannina, Greece |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://zenodo.org/record/3507782 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Top-k Relevant Semantic Place Retrieval on Spatial RDF Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11106 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Data Management and Algorithms |
| related_works | https://openalex.org/W4301152651, https://openalex.org/W2316359368, https://openalex.org/W3013807178, https://openalex.org/W3095079208, https://openalex.org/W1989267929, https://openalex.org/W4297696057, https://openalex.org/W2356738628, https://openalex.org/W2506264631, https://openalex.org/W3093217297, https://openalex.org/W3082761338 |
| cited_by_count | 25 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 5 |
| counts_by_year[5].year | 2018 |
| counts_by_year[5].cited_by_count | 3 |
| counts_by_year[6].year | 2017 |
| counts_by_year[6].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:zenodo.org:3507782 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/conferencePaper |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://zenodo.org/record/3507782 |
| primary_location.id | doi:10.1145/2882903.2882941 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2016 International Conference on Management of Data |
| primary_location.landing_page_url | https://doi.org/10.1145/2882903.2882941 |
| publication_date | 2016-06-16 |
| publication_year | 2016 |
| referenced_works | https://openalex.org/W3019943686, https://openalex.org/W143930293, https://openalex.org/W2019515069, https://openalex.org/W2100156887, https://openalex.org/W2147596559, https://openalex.org/W1971864278, https://openalex.org/W2164858177, https://openalex.org/W2168827908, https://openalex.org/W6636422680, https://openalex.org/W2134206624, https://openalex.org/W1725834033, https://openalex.org/W1973828215, https://openalex.org/W4242599275, https://openalex.org/W7027916732, https://openalex.org/W1981585544, https://openalex.org/W1978210737, https://openalex.org/W1990111898, https://openalex.org/W2122865749, https://openalex.org/W2125585631, https://openalex.org/W2111036405, https://openalex.org/W2021325937, https://openalex.org/W1968401677, https://openalex.org/W2171874178, https://openalex.org/W2131230769, https://openalex.org/W2019876129, https://openalex.org/W2146008005, https://openalex.org/W1770795006, https://openalex.org/W2077805358, https://openalex.org/W2089247435, https://openalex.org/W4206765718, https://openalex.org/W2050137450, https://openalex.org/W2116391761, https://openalex.org/W2097111141, https://openalex.org/W2095542621, https://openalex.org/W202256239, https://openalex.org/W68973316, https://openalex.org/W2102913801, https://openalex.org/W2078331965, https://openalex.org/W2171539317, https://openalex.org/W1982177147, https://openalex.org/W2093390569, https://openalex.org/W2148942721, https://openalex.org/W2121350579, https://openalex.org/W2118269922, https://openalex.org/W2113112851, https://openalex.org/W2135961964, https://openalex.org/W1715730942, https://openalex.org/W2098388305, https://openalex.org/W1604098248, https://openalex.org/W2132534516, https://openalex.org/W2274052726, https://openalex.org/W2162098482 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 43, 87, 151, 169 |
| abstract_inverted_index.At | 60 |
| abstract_inverted_index.In | 80 |
| abstract_inverted_index.To | 160 |
| abstract_inverted_index.We | 149 |
| abstract_inverted_index.as | 10, 20, 22 |
| abstract_inverted_index.at | 32, 118 |
| abstract_inverted_index.do | 139 |
| abstract_inverted_index.is | 50, 105, 131 |
| abstract_inverted_index.of | 45, 98, 128, 145, 157, 188 |
| abstract_inverted_index.on | 28, 93, 142, 178 |
| abstract_inverted_index.to | 16, 51, 76, 106, 122, 192 |
| abstract_inverted_index.we | 83 |
| abstract_inverted_index.© | 196 |
| abstract_inverted_index.RDF | 0, 24, 29, 54, 65, 94, 108 |
| abstract_inverted_index.The | 96, 126 |
| abstract_inverted_index.all | 58 |
| abstract_inverted_index.and | 47, 85, 115, 136, 168, 185 |
| abstract_inverted_index.are | 2, 116, 134, 173 |
| abstract_inverted_index.for | 154 |
| abstract_inverted_index.not | 140 |
| abstract_inverted_index.our | 189 |
| abstract_inverted_index.set | 44 |
| abstract_inverted_index.the | 18, 23, 34, 39, 48, 61, 74, 112, 123, 143, 155, 183, 193 |
| abstract_inverted_index.two | 165, 179 |
| abstract_inverted_index.use | 144 |
| abstract_inverted_index.2016 | 197 |
| abstract_inverted_index.ACM. | 198 |
| abstract_inverted_index.aims | 31 |
| abstract_inverted_index.also | 68 |
| abstract_inverted_index.data | 1, 30, 170 |
| abstract_inverted_index.find | 52, 107 |
| abstract_inverted_index.from | 36 |
| abstract_inverted_index.goal | 49 |
| abstract_inverted_index.only | 41 |
| abstract_inverted_index.real | 180 |
| abstract_inverted_index.rely | 141 |
| abstract_inverted_index.road | 75 |
| abstract_inverted_index.same | 62 |
| abstract_inverted_index.such | 9 |
| abstract_inverted_index.that | 132, 137 |
| abstract_inverted_index.they | 133, 138 |
| abstract_inverted_index.this | 13, 81 |
| abstract_inverted_index.user | 35, 40 |
| abstract_inverted_index.well | 21 |
| abstract_inverted_index.κSP | 129, 158, 163 |
| abstract_inverted_index.bases | 67 |
| abstract_inverted_index.basic | 152, 194 |
| abstract_inverted_index.close | 121 |
| abstract_inverted_index.data. | 95 |
| abstract_inverted_index.novel | 88 |
| abstract_inverted_index.opens | 73 |
| abstract_inverted_index.query | 7, 92, 113, 124, 147 |
| abstract_inverted_index.small | 53 |
| abstract_inverted_index.study | 86 |
| abstract_inverted_index.these | 37 |
| abstract_inverted_index.time, | 63 |
| abstract_inverted_index.users | 15 |
| abstract_inverted_index.using | 5 |
| abstract_inverted_index.which | 56, 72, 110 |
| abstract_inverted_index.work, | 82 |
| abstract_inverted_index.(κSP) | 103 |
| abstract_inverted_index.design | 150 |
| abstract_inverted_index.inputs | 42 |
| abstract_inverted_index.method | 153 |
| abstract_inverted_index.places | 102 |
| abstract_inverted_index.robust | 186 |
| abstract_inverted_index.rooted | 117 |
| abstract_inverted_index.search | 27, 78, 91 |
| abstract_inverted_index.top-κ | 99 |
| abstract_inverted_index.Keyword | 26 |
| abstract_inverted_index.SPARQL. | 11 |
| abstract_inverted_index.contain | 57, 111 |
| abstract_inverted_index.further | 161 |
| abstract_inverted_index.include | 69 |
| abstract_inverted_index.keyword | 90 |
| abstract_inverted_index.method. | 195 |
| abstract_inverted_index.novelty | 127 |
| abstract_inverted_index.popular | 64 |
| abstract_inverted_index.propose | 84 |
| abstract_inverted_index.pruning | 166 |
| abstract_inverted_index.queries | 130 |
| abstract_inverted_index.schema. | 25 |
| abstract_inverted_index.spatial | 70, 119 |
| abstract_inverted_index.studies | 177 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.accessed | 4 |
| abstract_inverted_index.compared | 191 |
| abstract_inverted_index.datasets | 181 |
| abstract_inverted_index.entities | 120 |
| abstract_inverted_index.keywords | 46, 114 |
| abstract_inverted_index.language | 19 |
| abstract_inverted_index.queries. | 159 |
| abstract_inverted_index.relevant | 100 |
| abstract_inverted_index.requires | 14 |
| abstract_inverted_index.semantic | 101 |
| abstract_inverted_index.superior | 184 |
| abstract_inverted_index.Extensive | 175 |
| abstract_inverted_index.empirical | 176 |
| abstract_inverted_index.keywords. | 59 |
| abstract_inverted_index.knowledge | 66 |
| abstract_inverted_index.location. | 125 |
| abstract_inverted_index.objective | 97 |
| abstract_inverted_index.proposals | 190 |
| abstract_inverted_index.proposed. | 174 |
| abstract_inverted_index.relieving | 33 |
| abstract_inverted_index.retrieval | 104 |
| abstract_inverted_index.subgraphs | 55, 109 |
| abstract_inverted_index.technique | 172 |
| abstract_inverted_index.accelerate | 162 |
| abstract_inverted_index.approaches | 167 |
| abstract_inverted_index.languages, | 8 |
| abstract_inverted_index.languages. | 148 |
| abstract_inverted_index.processing | 156 |
| abstract_inverted_index.retrieval, | 164 |
| abstract_inverted_index.semantics, | 71 |
| abstract_inverted_index.structured | 6, 146 |
| abstract_inverted_index.understand | 17 |
| abstract_inverted_index.demonstrate | 182 |
| abstract_inverted_index.operations. | 79 |
| abstract_inverted_index.performance | 187 |
| abstract_inverted_index.preprocessing | 171 |
| abstract_inverted_index.requirements; | 38 |
| abstract_inverted_index.traditionally | 3 |
| abstract_inverted_index.location-aware | 135 |
| abstract_inverted_index.location-based | 77, 89 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.91879683 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |