TOPO-Loss for continuity-preserving crack detection using deep learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.conbuildmat.2022.128264
We present a method for segmenting cracks in images of masonry buildings damaged by earthquakes. Existing methods of crack detection fail to preserve the continuity of cracks, and their performance deteriorates with imprecise training labels. We address these problems by adapting an approach previously proposed for reconstructing roads in aerial images, in which a Convolutional Neural Network is trained with a loss function specifically designed to encourage the continuity of thin structures and to accommodate imprecise annotations. We evaluate combinations of three loss functions (the Mean Squared Error, the Dice loss and the new connectivity-oriented loss) on two datasets using TernausNet, a deep network shown to attain state-of-the-art accuracy in crack detection. We herein show that combining these three losses significantly improves the topology of the predictions quantitatively and qualitatively. We also propose a new continuity metric, named Cracks Per Patch (CPP), and share a new dataset of images of earthquake-affected urban scenes accompanied by crack annotations. The dataset and implementations are publicly available for future studies and benchmarking (https://github.com/eesd-epfl/topo_crack_detection and https://doi.org/10.5281/zenodo.6769028).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.conbuildmat.2022.128264
- OA Status
- hybrid
- Cited By
- 47
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283715843
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283715843Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.conbuildmat.2022.128264Digital Object Identifier
- Title
-
TOPO-Loss for continuity-preserving crack detection using deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-30Full publication date if available
- Authors
-
Bryan German Pantoja-Rosero, Doruk Öner, Mateusz Koziński, Radhakrishna Achanta, Pascal Fua, Fernando Pérez‐Cruz, Katrin BeyerList of authors in order
- Landing page
-
https://doi.org/10.1016/j.conbuildmat.2022.128264Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.conbuildmat.2022.128264Direct OA link when available
- Concepts
-
Computer science, Metric (unit), Convolutional neural network, Dice, Artificial intelligence, Deep learning, Benchmarking, Function (biology), Masonry, Mean squared error, Artificial neural network, Pattern recognition (psychology), Structural engineering, Mathematics, Engineering, Geometry, Statistics, Marketing, Operations management, Business, Biology, Evolutionary biologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
47Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 17, 2023: 15, 2022: 2Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283715843 |
|---|---|
| doi | https://doi.org/10.1016/j.conbuildmat.2022.128264 |
| ids.doi | https://doi.org/10.3929/ethz-b-000557210 |
| ids.openalex | https://openalex.org/W4283715843 |
| fwci | 6.78967971 |
| type | article |
| title | TOPO-Loss for continuity-preserving crack detection using deep learning |
| biblio.issue | |
| biblio.volume | 344 |
| biblio.last_page | 128264 |
| biblio.first_page | 128264 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T10264 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9768999814987183 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Asphalt Pavement Performance Evaluation |
| topics[2].id | https://openalex.org/T11850 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9763000011444092 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Concrete Corrosion and Durability |
| is_xpac | False |
| apc_list.value | 3780 |
| apc_list.currency | USD |
| apc_list.value_usd | 3780 |
| apc_paid.value | 3780 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3780 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6257975101470947 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C176217482 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6114295721054077 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[1].display_name | Metric (unit) |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5992968678474426 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C22029948 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5280685424804688 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q45089 |
| concepts[3].display_name | Dice |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49893712997436523 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4806877076625824 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C86251818 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4642530083656311 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[6].display_name | Benchmarking |
| concepts[7].id | https://openalex.org/C14036430 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46067723631858826 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[7].display_name | Function (biology) |
| concepts[8].id | https://openalex.org/C535899295 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4509626030921936 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q272999 |
| concepts[8].display_name | Masonry |
| concepts[9].id | https://openalex.org/C139945424 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4417910575866699 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[9].display_name | Mean squared error |
| concepts[10].id | https://openalex.org/C50644808 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42606738209724426 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[10].display_name | Artificial neural network |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.35185331106185913 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C66938386 |
| concepts[12].level | 1 |
| concepts[12].score | 0.30505767464637756 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[12].display_name | Structural engineering |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.20498254895210266 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.1736457645893097 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12358635663986206 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.09375151991844177 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C162853370 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[17].display_name | Marketing |
| concepts[18].id | https://openalex.org/C21547014 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[18].display_name | Operations management |
| concepts[19].id | https://openalex.org/C144133560 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[19].display_name | Business |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C78458016 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[21].display_name | Evolutionary biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6257975101470947 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/metric |
| keywords[1].score | 0.6114295721054077 |
| keywords[1].display_name | Metric (unit) |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.5992968678474426 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/dice |
| keywords[3].score | 0.5280685424804688 |
| keywords[3].display_name | Dice |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.49893712997436523 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.4806877076625824 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/benchmarking |
| keywords[6].score | 0.4642530083656311 |
| keywords[6].display_name | Benchmarking |
| keywords[7].id | https://openalex.org/keywords/function |
| keywords[7].score | 0.46067723631858826 |
| keywords[7].display_name | Function (biology) |
| keywords[8].id | https://openalex.org/keywords/masonry |
| keywords[8].score | 0.4509626030921936 |
| keywords[8].display_name | Masonry |
| keywords[9].id | https://openalex.org/keywords/mean-squared-error |
| keywords[9].score | 0.4417910575866699 |
| keywords[9].display_name | Mean squared error |
| keywords[10].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[10].score | 0.42606738209724426 |
| keywords[10].display_name | Artificial neural network |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.35185331106185913 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/structural-engineering |
| keywords[12].score | 0.30505767464637756 |
| keywords[12].display_name | Structural engineering |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.20498254895210266 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.1736457645893097 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/geometry |
| keywords[15].score | 0.12358635663986206 |
| keywords[15].display_name | Geometry |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.09375151991844177 |
| keywords[16].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1016/j.conbuildmat.2022.128264 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S29980478 |
| locations[0].source.issn | 0950-0618, 1879-0526 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0950-0618 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Construction and Building Materials |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Construction and Building Materials |
| locations[0].landing_page_url | https://doi.org/10.1016/j.conbuildmat.2022.128264 |
| locations[1].id | pmh:oai:infoscience.epfl.ch:297239 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400487 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Infoscience (Ecole Polytechnique Fédérale de Lausanne) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | research article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://infoscience.epfl.ch/record/297239 |
| locations[2].id | pmh:oai:www.research-collection.ethz.ch:20.500.11850/557210 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402302 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Repository for Publications and Research Data (ETH Zurich) |
| locations[2].source.host_organization | https://openalex.org/I35440088 |
| locations[2].source.host_organization_name | ETH Zurich |
| locations[2].source.host_organization_lineage | https://openalex.org/I35440088 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | info:eu-repo/semantics/publishedVersion |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Construction and Building Materials, 344 |
| locations[2].landing_page_url | http://hdl.handle.net/20.500.11850/557210 |
| locations[3].id | doi:10.3929/ethz-b-000557210 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S7407051236 |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | ETH Zürich Research Collection |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.3929/ethz-b-000557210 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5065165165 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3723-3882 |
| authorships[0].author.display_name | Bryan German Pantoja-Rosero |
| authorships[0].countries | CH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[0].affiliations[0].raw_affiliation_string | Earthquake Engineering and Structural Dynamics Laboratory (EESD), EPFL, 1015 Lausanne, Switzerland |
| authorships[0].institutions[0].id | https://openalex.org/I5124864 |
| authorships[0].institutions[0].ror | https://ror.org/02s376052 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[0].institutions[0].country_code | CH |
| authorships[0].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | B.G. Pantoja-Rosero |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Earthquake Engineering and Structural Dynamics Laboratory (EESD), EPFL, 1015 Lausanne, Switzerland |
| authorships[1].author.id | https://openalex.org/A5029666409 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9403-4628 |
| authorships[1].author.display_name | Doruk Öner |
| authorships[1].countries | CH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[1].affiliations[0].raw_affiliation_string | Computer Vision Laboratory (CVLab), EPFL, 1015 Lausanne, Switzerland |
| authorships[1].institutions[0].id | https://openalex.org/I5124864 |
| authorships[1].institutions[0].ror | https://ror.org/02s376052 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | D. Oner |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Computer Vision Laboratory (CVLab), EPFL, 1015 Lausanne, Switzerland |
| authorships[2].author.id | https://openalex.org/A5044530513 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3187-518X |
| authorships[2].author.display_name | Mateusz Koziński |
| authorships[2].countries | AT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4092182 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Computer Vision and Graphics, Technical University of Graz, 8010 Graz, Austria |
| authorships[2].institutions[0].id | https://openalex.org/I4092182 |
| authorships[2].institutions[0].ror | https://ror.org/00d7xrm67 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4092182 |
| authorships[2].institutions[0].country_code | AT |
| authorships[2].institutions[0].display_name | Graz University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | M. Kozinski |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Computer Vision and Graphics, Technical University of Graz, 8010 Graz, Austria |
| authorships[3].author.id | https://openalex.org/A5083791711 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7894-275X |
| authorships[3].author.display_name | Radhakrishna Achanta |
| authorships[3].countries | CH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I35440088, https://openalex.org/I4210122261, https://openalex.org/I5124864 |
| authorships[3].affiliations[0].raw_affiliation_string | Swiss Data Science Center (SDSC), EPFL and ETH Zurich, 1015 Lausanne, Switzerland |
| authorships[3].institutions[0].id | https://openalex.org/I35440088 |
| authorships[3].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[3].institutions[0].country_code | CH |
| authorships[3].institutions[0].display_name | ETH Zurich |
| authorships[3].institutions[1].id | https://openalex.org/I4210122261 |
| authorships[3].institutions[1].ror | https://ror.org/02hdt9m26 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088, https://openalex.org/I4210122261, https://openalex.org/I5124864 |
| authorships[3].institutions[1].country_code | CH |
| authorships[3].institutions[1].display_name | Swiss Data Science Center |
| authorships[3].institutions[2].id | https://openalex.org/I5124864 |
| authorships[3].institutions[2].ror | https://ror.org/02s376052 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[3].institutions[2].country_code | CH |
| authorships[3].institutions[2].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | R. Achanta |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Swiss Data Science Center (SDSC), EPFL and ETH Zurich, 1015 Lausanne, Switzerland |
| authorships[4].author.id | https://openalex.org/A5038674741 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6702-9970 |
| authorships[4].author.display_name | Pascal Fua |
| authorships[4].countries | CH |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[4].affiliations[0].raw_affiliation_string | Computer Vision Laboratory (CVLab), EPFL, 1015 Lausanne, Switzerland |
| authorships[4].institutions[0].id | https://openalex.org/I5124864 |
| authorships[4].institutions[0].ror | https://ror.org/02s376052 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[4].institutions[0].country_code | CH |
| authorships[4].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | P. Fua |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Computer Vision Laboratory (CVLab), EPFL, 1015 Lausanne, Switzerland |
| authorships[5].author.id | https://openalex.org/A5088555568 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8996-5076 |
| authorships[5].author.display_name | Fernando Pérez‐Cruz |
| authorships[5].countries | CH |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I35440088, https://openalex.org/I4210122261, https://openalex.org/I5124864 |
| authorships[5].affiliations[0].raw_affiliation_string | Swiss Data Science Center (SDSC), EPFL and ETH Zurich, 1015 Lausanne, Switzerland |
| authorships[5].institutions[0].id | https://openalex.org/I35440088 |
| authorships[5].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[5].institutions[0].country_code | CH |
| authorships[5].institutions[0].display_name | ETH Zurich |
| authorships[5].institutions[1].id | https://openalex.org/I4210122261 |
| authorships[5].institutions[1].ror | https://ror.org/02hdt9m26 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088, https://openalex.org/I4210122261, https://openalex.org/I5124864 |
| authorships[5].institutions[1].country_code | CH |
| authorships[5].institutions[1].display_name | Swiss Data Science Center |
| authorships[5].institutions[2].id | https://openalex.org/I5124864 |
| authorships[5].institutions[2].ror | https://ror.org/02s376052 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[5].institutions[2].country_code | CH |
| authorships[5].institutions[2].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | F. Perez-Cruz |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Swiss Data Science Center (SDSC), EPFL and ETH Zurich, 1015 Lausanne, Switzerland |
| authorships[6].author.id | https://openalex.org/A5069185743 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6883-5157 |
| authorships[6].author.display_name | Katrin Beyer |
| authorships[6].countries | CH |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I5124864 |
| authorships[6].affiliations[0].raw_affiliation_string | Earthquake Engineering and Structural Dynamics Laboratory (EESD), EPFL, 1015 Lausanne, Switzerland |
| authorships[6].institutions[0].id | https://openalex.org/I5124864 |
| authorships[6].institutions[0].ror | https://ror.org/02s376052 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I5124864 |
| authorships[6].institutions[0].country_code | CH |
| authorships[6].institutions[0].display_name | École Polytechnique Fédérale de Lausanne |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | K. Beyer |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Earthquake Engineering and Structural Dynamics Laboratory (EESD), EPFL, 1015 Lausanne, Switzerland |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.conbuildmat.2022.128264 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | TOPO-Loss for continuity-preserving crack detection using deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W3104750253, https://openalex.org/W3021239166, https://openalex.org/W4366341510, https://openalex.org/W4238897586, https://openalex.org/W2390936256, https://openalex.org/W2483429559, https://openalex.org/W2016385589, https://openalex.org/W2009559548, https://openalex.org/W2803139007, https://openalex.org/W2088647418 |
| cited_by_count | 47 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 17 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 15 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.conbuildmat.2022.128264 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S29980478 |
| best_oa_location.source.issn | 0950-0618, 1879-0526 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0950-0618 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Construction and Building Materials |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Construction and Building Materials |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.conbuildmat.2022.128264 |
| primary_location.id | doi:10.1016/j.conbuildmat.2022.128264 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S29980478 |
| primary_location.source.issn | 0950-0618, 1879-0526 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0950-0618 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Construction and Building Materials |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Construction and Building Materials |
| primary_location.landing_page_url | https://doi.org/10.1016/j.conbuildmat.2022.128264 |
| publication_date | 2022-06-30 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2736416932, https://openalex.org/W2985669209, https://openalex.org/W6770629682, https://openalex.org/W6777876016, https://openalex.org/W6635809550, https://openalex.org/W6797805817, https://openalex.org/W6725891551, https://openalex.org/W2748643398, https://openalex.org/W2941053158, https://openalex.org/W2598457882, https://openalex.org/W6753649111, https://openalex.org/W2896613037, https://openalex.org/W2941356554, https://openalex.org/W6790922864, https://openalex.org/W4200535558, https://openalex.org/W3082043672, https://openalex.org/W6809483555, https://openalex.org/W3161374972, https://openalex.org/W6805579837, https://openalex.org/W3083292218, https://openalex.org/W2922073063, https://openalex.org/W2887597701, https://openalex.org/W1513670756, https://openalex.org/W2091149439, https://openalex.org/W2137160061, https://openalex.org/W2085289201, https://openalex.org/W2157026765, https://openalex.org/W2170140722, https://openalex.org/W2765854388, https://openalex.org/W6639824700, https://openalex.org/W3003890779, https://openalex.org/W3090789213, https://openalex.org/W2887092226, https://openalex.org/W2956776634, https://openalex.org/W6718240422, https://openalex.org/W6637757992, https://openalex.org/W6631190155, https://openalex.org/W3015813519, https://openalex.org/W1686810756, https://openalex.org/W2782757030, https://openalex.org/W2798655820, https://openalex.org/W4205386825, https://openalex.org/W2511065100, https://openalex.org/W2965019476, https://openalex.org/W3134108147, https://openalex.org/W3024366149, https://openalex.org/W3176407040, https://openalex.org/W2991822754, https://openalex.org/W2893001456, https://openalex.org/W3152984827, https://openalex.org/W4220943253, https://openalex.org/W1601369032, https://openalex.org/W2499316477 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 2, 53, 60, 101, 133, 144 |
| abstract_inverted_index.We | 0, 35, 77, 112, 130 |
| abstract_inverted_index.an | 41 |
| abstract_inverted_index.by | 13, 39, 154 |
| abstract_inverted_index.in | 7, 48, 51, 109 |
| abstract_inverted_index.is | 57 |
| abstract_inverted_index.of | 9, 17, 25, 69, 80, 124, 147, 149 |
| abstract_inverted_index.on | 96 |
| abstract_inverted_index.to | 21, 65, 73, 105 |
| abstract_inverted_index.Per | 139 |
| abstract_inverted_index.The | 157 |
| abstract_inverted_index.and | 27, 72, 91, 128, 142, 159, 167, 170 |
| abstract_inverted_index.are | 161 |
| abstract_inverted_index.for | 4, 45, 164 |
| abstract_inverted_index.new | 93, 134, 145 |
| abstract_inverted_index.the | 23, 67, 88, 92, 122, 125 |
| abstract_inverted_index.two | 97 |
| abstract_inverted_index.(the | 84 |
| abstract_inverted_index.Dice | 89 |
| abstract_inverted_index.Mean | 85 |
| abstract_inverted_index.also | 131 |
| abstract_inverted_index.deep | 102 |
| abstract_inverted_index.fail | 20 |
| abstract_inverted_index.loss | 61, 82, 90 |
| abstract_inverted_index.show | 114 |
| abstract_inverted_index.that | 115 |
| abstract_inverted_index.thin | 70 |
| abstract_inverted_index.with | 31, 59 |
| abstract_inverted_index.Patch | 140 |
| abstract_inverted_index.crack | 18, 110, 155 |
| abstract_inverted_index.loss) | 95 |
| abstract_inverted_index.named | 137 |
| abstract_inverted_index.roads | 47 |
| abstract_inverted_index.share | 143 |
| abstract_inverted_index.shown | 104 |
| abstract_inverted_index.their | 28 |
| abstract_inverted_index.these | 37, 117 |
| abstract_inverted_index.three | 81, 118 |
| abstract_inverted_index.urban | 151 |
| abstract_inverted_index.using | 99 |
| abstract_inverted_index.which | 52 |
| abstract_inverted_index.(CPP), | 141 |
| abstract_inverted_index.Cracks | 138 |
| abstract_inverted_index.Error, | 87 |
| abstract_inverted_index.Neural | 55 |
| abstract_inverted_index.aerial | 49 |
| abstract_inverted_index.attain | 106 |
| abstract_inverted_index.cracks | 6 |
| abstract_inverted_index.future | 165 |
| abstract_inverted_index.herein | 113 |
| abstract_inverted_index.images | 8, 148 |
| abstract_inverted_index.losses | 119 |
| abstract_inverted_index.method | 3 |
| abstract_inverted_index.scenes | 152 |
| abstract_inverted_index.Network | 56 |
| abstract_inverted_index.Squared | 86 |
| abstract_inverted_index.address | 36 |
| abstract_inverted_index.cracks, | 26 |
| abstract_inverted_index.damaged | 12 |
| abstract_inverted_index.dataset | 146, 158 |
| abstract_inverted_index.images, | 50 |
| abstract_inverted_index.labels. | 34 |
| abstract_inverted_index.masonry | 10 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.metric, | 136 |
| abstract_inverted_index.network | 103 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.propose | 132 |
| abstract_inverted_index.studies | 166 |
| abstract_inverted_index.trained | 58 |
| abstract_inverted_index.Existing | 15 |
| abstract_inverted_index.accuracy | 108 |
| abstract_inverted_index.adapting | 40 |
| abstract_inverted_index.approach | 42 |
| abstract_inverted_index.datasets | 98 |
| abstract_inverted_index.designed | 64 |
| abstract_inverted_index.evaluate | 78 |
| abstract_inverted_index.function | 62 |
| abstract_inverted_index.improves | 121 |
| abstract_inverted_index.preserve | 22 |
| abstract_inverted_index.problems | 38 |
| abstract_inverted_index.proposed | 44 |
| abstract_inverted_index.publicly | 162 |
| abstract_inverted_index.topology | 123 |
| abstract_inverted_index.training | 33 |
| abstract_inverted_index.available | 163 |
| abstract_inverted_index.buildings | 11 |
| abstract_inverted_index.combining | 116 |
| abstract_inverted_index.detection | 19 |
| abstract_inverted_index.encourage | 66 |
| abstract_inverted_index.functions | 83 |
| abstract_inverted_index.imprecise | 32, 75 |
| abstract_inverted_index.continuity | 24, 68, 135 |
| abstract_inverted_index.detection. | 111 |
| abstract_inverted_index.previously | 43 |
| abstract_inverted_index.segmenting | 5 |
| abstract_inverted_index.structures | 71 |
| abstract_inverted_index.TernausNet, | 100 |
| abstract_inverted_index.accommodate | 74 |
| abstract_inverted_index.accompanied | 153 |
| abstract_inverted_index.performance | 29 |
| abstract_inverted_index.predictions | 126 |
| abstract_inverted_index.annotations. | 76, 156 |
| abstract_inverted_index.benchmarking | 168 |
| abstract_inverted_index.combinations | 79 |
| abstract_inverted_index.deteriorates | 30 |
| abstract_inverted_index.earthquakes. | 14 |
| abstract_inverted_index.specifically | 63 |
| abstract_inverted_index.Convolutional | 54 |
| abstract_inverted_index.significantly | 120 |
| abstract_inverted_index.qualitatively. | 129 |
| abstract_inverted_index.quantitatively | 127 |
| abstract_inverted_index.reconstructing | 46 |
| abstract_inverted_index.implementations | 160 |
| abstract_inverted_index.state-of-the-art | 107 |
| abstract_inverted_index.earthquake-affected | 150 |
| abstract_inverted_index.connectivity-oriented | 94 |
| abstract_inverted_index.https://doi.org/10.5281/zenodo.6769028). | 171 |
| abstract_inverted_index.(https://github.com/eesd-epfl/topo_crack_detection | 169 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5069185743 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I5124864 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.9693555 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |