Topological components of spaces of commuting elements in connected nilpotent Lie groups Article Swipe
Omar Antolín Camarena
,
Bernardo Villarreal
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.09652
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2405.09652
We study the homotopy type of spaces of commuting elements in connected nilpotent Lie groups, via almost commuting elements in their Lie algebras. We give a necessary and sufficient condition on the fundamental group of such a Lie group $G$ to ensure $\mathrm{Hom}(\mathbb{Z}^k,G)$ is path-connected. In particular for the reduced upper unitriangular groups and the reduced generalized Heisenberg groups, $\mathrm{Hom}(\mathbb{Z}^k,G)$ is not path-connected, and we compute the homotopy type of its path-connected components in terms of Stiefel manifolds and the maximal torus of $G$.
Related Topics
Concepts
Nilpotent
Lie group
Topology (electrical circuits)
Mathematics
Pure mathematics
Lie theory
Geography
Combinatorics
Lie conformal algebra
Adjoint representation of a Lie algebra
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2405.09652
- https://arxiv.org/pdf/2405.09652
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4397028171
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4397028171Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2405.09652Digital Object Identifier
- Title
-
Topological components of spaces of commuting elements in connected nilpotent Lie groupsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-15Full publication date if available
- Authors
-
Omar Antolín Camarena, Bernardo VillarrealList of authors in order
- Landing page
-
https://arxiv.org/abs/2405.09652Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2405.09652Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2405.09652Direct OA link when available
- Concepts
-
Nilpotent, Lie group, Topology (electrical circuits), Mathematics, Pure mathematics, Lie theory, Geography, Combinatorics, Lie conformal algebra, Adjoint representation of a Lie algebraTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4397028171 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2405.09652 |
| ids.doi | https://doi.org/10.48550/arxiv.2405.09652 |
| ids.openalex | https://openalex.org/W4397028171 |
| fwci | |
| type | preprint |
| title | Topological components of spaces of commuting elements in connected nilpotent Lie groups |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10849 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9171000123023987 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2607 |
| topics[0].subfield.display_name | Discrete Mathematics and Combinatorics |
| topics[0].display_name | Finite Group Theory Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50555996 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7020145654678345 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q840023 |
| concepts[0].display_name | Nilpotent |
| concepts[1].id | https://openalex.org/C187915474 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6043645143508911 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622679 |
| concepts[1].display_name | Lie group |
| concepts[2].id | https://openalex.org/C184720557 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5394495129585266 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7825049 |
| concepts[2].display_name | Topology (electrical circuits) |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5360778570175171 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C202444582 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5198372006416321 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[4].display_name | Pure mathematics |
| concepts[5].id | https://openalex.org/C143135876 |
| concepts[5].level | 5 |
| concepts[5].score | 0.4249183237552643 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q357300 |
| concepts[5].display_name | Lie theory |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3605360984802246 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C114614502 |
| concepts[7].level | 1 |
| concepts[7].score | 0.17112082242965698 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[7].display_name | Combinatorics |
| concepts[8].id | https://openalex.org/C73648015 |
| concepts[8].level | 3 |
| concepts[8].score | 0.06680256128311157 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q6543817 |
| concepts[8].display_name | Lie conformal algebra |
| concepts[9].id | https://openalex.org/C203946495 |
| concepts[9].level | 4 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1017106 |
| concepts[9].display_name | Adjoint representation of a Lie algebra |
| keywords[0].id | https://openalex.org/keywords/nilpotent |
| keywords[0].score | 0.7020145654678345 |
| keywords[0].display_name | Nilpotent |
| keywords[1].id | https://openalex.org/keywords/lie-group |
| keywords[1].score | 0.6043645143508911 |
| keywords[1].display_name | Lie group |
| keywords[2].id | https://openalex.org/keywords/topology |
| keywords[2].score | 0.5394495129585266 |
| keywords[2].display_name | Topology (electrical circuits) |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5360778570175171 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/pure-mathematics |
| keywords[4].score | 0.5198372006416321 |
| keywords[4].display_name | Pure mathematics |
| keywords[5].id | https://openalex.org/keywords/lie-theory |
| keywords[5].score | 0.4249183237552643 |
| keywords[5].display_name | Lie theory |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.3605360984802246 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/combinatorics |
| keywords[7].score | 0.17112082242965698 |
| keywords[7].display_name | Combinatorics |
| keywords[8].id | https://openalex.org/keywords/lie-conformal-algebra |
| keywords[8].score | 0.06680256128311157 |
| keywords[8].display_name | Lie conformal algebra |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2405.09652 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2405.09652 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2405.09652 |
| locations[1].id | doi:10.48550/arxiv.2405.09652 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2405.09652 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5076987222 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5335-7471 |
| authorships[0].author.display_name | Omar Antolín Camarena |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Antolín-Camarena, Omar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5011802109 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6856-9509 |
| authorships[1].author.display_name | Bernardo Villarreal |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Villarreal, Bernardo |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2405.09652 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-18T00:00:00 |
| display_name | Topological components of spaces of commuting elements in connected nilpotent Lie groups |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10849 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9171000123023987 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2607 |
| primary_topic.subfield.display_name | Discrete Mathematics and Combinatorics |
| primary_topic.display_name | Finite Group Theory Research |
| related_works | https://openalex.org/W2952605465, https://openalex.org/W3184611687, https://openalex.org/W2981695848, https://openalex.org/W4300900232, https://openalex.org/W4947501, https://openalex.org/W4386794951, https://openalex.org/W2256043873, https://openalex.org/W4320807737, https://openalex.org/W4293059793, https://openalex.org/W4230659680 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2405.09652 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2405.09652 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2405.09652 |
| primary_location.id | pmh:oai:arXiv.org:2405.09652 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2405.09652 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2405.09652 |
| publication_date | 2024-05-15 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 25, 36 |
| abstract_inverted_index.In | 45 |
| abstract_inverted_index.We | 0, 23 |
| abstract_inverted_index.in | 10, 19, 73 |
| abstract_inverted_index.is | 43, 60 |
| abstract_inverted_index.of | 5, 7, 34, 69, 75, 82 |
| abstract_inverted_index.on | 30 |
| abstract_inverted_index.to | 40 |
| abstract_inverted_index.we | 64 |
| abstract_inverted_index.$G$ | 39 |
| abstract_inverted_index.Lie | 13, 21, 37 |
| abstract_inverted_index.and | 27, 53, 63, 78 |
| abstract_inverted_index.for | 47 |
| abstract_inverted_index.its | 70 |
| abstract_inverted_index.not | 61 |
| abstract_inverted_index.the | 2, 31, 48, 54, 66, 79 |
| abstract_inverted_index.via | 15 |
| abstract_inverted_index.$G$. | 83 |
| abstract_inverted_index.give | 24 |
| abstract_inverted_index.such | 35 |
| abstract_inverted_index.type | 4, 68 |
| abstract_inverted_index.group | 33, 38 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.terms | 74 |
| abstract_inverted_index.their | 20 |
| abstract_inverted_index.torus | 81 |
| abstract_inverted_index.upper | 50 |
| abstract_inverted_index.almost | 16 |
| abstract_inverted_index.ensure | 41 |
| abstract_inverted_index.groups | 52 |
| abstract_inverted_index.spaces | 6 |
| abstract_inverted_index.Stiefel | 76 |
| abstract_inverted_index.compute | 65 |
| abstract_inverted_index.groups, | 14, 58 |
| abstract_inverted_index.maximal | 80 |
| abstract_inverted_index.reduced | 49, 55 |
| abstract_inverted_index.elements | 9, 18 |
| abstract_inverted_index.homotopy | 3, 67 |
| abstract_inverted_index.algebras. | 22 |
| abstract_inverted_index.commuting | 8, 17 |
| abstract_inverted_index.condition | 29 |
| abstract_inverted_index.connected | 11 |
| abstract_inverted_index.manifolds | 77 |
| abstract_inverted_index.necessary | 26 |
| abstract_inverted_index.nilpotent | 12 |
| abstract_inverted_index.Heisenberg | 57 |
| abstract_inverted_index.components | 72 |
| abstract_inverted_index.particular | 46 |
| abstract_inverted_index.sufficient | 28 |
| abstract_inverted_index.fundamental | 32 |
| abstract_inverted_index.generalized | 56 |
| abstract_inverted_index.unitriangular | 51 |
| abstract_inverted_index.path-connected | 71 |
| abstract_inverted_index.path-connected, | 62 |
| abstract_inverted_index.path-connected. | 44 |
| abstract_inverted_index.$\mathrm{Hom}(\mathbb{Z}^k,G)$ | 42, 59 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |