TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.00433
We propose TopoOpt, a novel direct-connect fabric for deep neural network (DNN) training workloads. TopoOpt co-optimizes the distributed training process across three dimensions: computation, communication, and network topology. We demonstrate the mutability of AllReduce traffic, and leverage this property to construct efficient network topologies for DNN training jobs. TopoOpt then uses an alternating optimization technique and a group theory-inspired algorithm called TotientPerms to find the best network topology and routing plan, together with a parallelization strategy. We build a fully functional 12-node direct-connect prototype with remote direct memory access (RDMA) forwarding at 100 Gbps. Large-scale simulations on real distributed training models show that, compared to similar-cost Fat-Tree interconnects, TopoOpt reduces DNN training time by up to 3.4x.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.00433
- https://arxiv.org/pdf/2202.00433
- OA Status
- green
- Cited By
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4300973219
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4300973219Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.00433Digital Object Identifier
- Title
-
TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training JobsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-01Full publication date if available
- Authors
-
Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia, Dheevatsa Mudigere, Ying Zhang, Anthony KewitschList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.00433Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.00433Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.00433Direct OA link when available
- Concepts
-
Computer science, Leverage (statistics), Network topology, Distributed computing, Parallel computing, Node (physics), Computation, Artificial neural network, Topology (electrical circuits), Computer network, Artificial intelligence, Algorithm, Combinatorics, Structural engineering, Mathematics, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 5, 2023: 4, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4300973219 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.00433 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.00433 |
| ids.openalex | https://openalex.org/W4300973219 |
| fwci | |
| type | preprint |
| title | TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12808 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Ferroelectric and Negative Capacitance Devices |
| topics[1].id | https://openalex.org/T10502 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Memory and Neural Computing |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9972000122070312 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7858797907829285 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C153083717 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6755752563476562 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6535263 |
| concepts[1].display_name | Leverage (statistics) |
| concepts[2].id | https://openalex.org/C199845137 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6574609279632568 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q145490 |
| concepts[2].display_name | Network topology |
| concepts[3].id | https://openalex.org/C120314980 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5699213743209839 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[3].display_name | Distributed computing |
| concepts[4].id | https://openalex.org/C173608175 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46491295099258423 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[4].display_name | Parallel computing |
| concepts[5].id | https://openalex.org/C62611344 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42779144644737244 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[5].display_name | Node (physics) |
| concepts[6].id | https://openalex.org/C45374587 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4217666983604431 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[6].display_name | Computation |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4125763773918152 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C184720557 |
| concepts[8].level | 2 |
| concepts[8].score | 0.3405856490135193 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7825049 |
| concepts[8].display_name | Topology (electrical circuits) |
| concepts[9].id | https://openalex.org/C31258907 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3393477201461792 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[9].display_name | Computer network |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.24357306957244873 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11387169361114502 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C114614502 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[12].display_name | Combinatorics |
| concepts[13].id | https://openalex.org/C66938386 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[13].display_name | Structural engineering |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7858797907829285 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/leverage |
| keywords[1].score | 0.6755752563476562 |
| keywords[1].display_name | Leverage (statistics) |
| keywords[2].id | https://openalex.org/keywords/network-topology |
| keywords[2].score | 0.6574609279632568 |
| keywords[2].display_name | Network topology |
| keywords[3].id | https://openalex.org/keywords/distributed-computing |
| keywords[3].score | 0.5699213743209839 |
| keywords[3].display_name | Distributed computing |
| keywords[4].id | https://openalex.org/keywords/parallel-computing |
| keywords[4].score | 0.46491295099258423 |
| keywords[4].display_name | Parallel computing |
| keywords[5].id | https://openalex.org/keywords/node |
| keywords[5].score | 0.42779144644737244 |
| keywords[5].display_name | Node (physics) |
| keywords[6].id | https://openalex.org/keywords/computation |
| keywords[6].score | 0.4217666983604431 |
| keywords[6].display_name | Computation |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.4125763773918152 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/topology |
| keywords[8].score | 0.3405856490135193 |
| keywords[8].display_name | Topology (electrical circuits) |
| keywords[9].id | https://openalex.org/keywords/computer-network |
| keywords[9].score | 0.3393477201461792 |
| keywords[9].display_name | Computer network |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.24357306957244873 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.11387169361114502 |
| keywords[11].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.00433 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.00433 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.00433 |
| locations[1].id | doi:10.48550/arxiv.2202.00433 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.00433 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5042429449 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9036-8543 |
| authorships[0].author.display_name | Weiyang Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Weiyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5039438925 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Moein Khazraee |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khazraee, Moein |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024093604 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3131-374X |
| authorships[2].author.display_name | Zhizhen Zhong |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhong, Zhizhen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5058729992 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4095-1519 |
| authorships[3].author.display_name | Manya Ghobadi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ghobadi, Manya |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5039360973 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5525-2721 |
| authorships[4].author.display_name | Zhihao Jia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jia, Zhihao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5066366329 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Dheevatsa Mudigere |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mudigere, Dheevatsa |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5100386104 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2674-1638 |
| authorships[6].author.display_name | Ying Zhang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhang, Ying |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5042078774 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Anthony Kewitsch |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Kewitsch, Anthony |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.00433 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-10-04T00:00:00 |
| display_name | TopoOpt: Co-optimizing Network Topology and Parallelization Strategy for Distributed Training Jobs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12808 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Ferroelectric and Negative Capacitance Devices |
| related_works | https://openalex.org/W2086397253, https://openalex.org/W2133122801, https://openalex.org/W600422426, https://openalex.org/W2007156430, https://openalex.org/W3081478936, https://openalex.org/W4231775656, https://openalex.org/W2046435967, https://openalex.org/W2785612136, https://openalex.org/W2099529706, https://openalex.org/W1988224651 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.00433 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.00433 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.00433 |
| primary_location.id | pmh:oai:arXiv.org:2202.00433 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.00433 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.00433 |
| publication_date | 2022-02-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 3, 56, 73, 78 |
| abstract_inverted_index.We | 0, 28, 76 |
| abstract_inverted_index.an | 51 |
| abstract_inverted_index.at | 91 |
| abstract_inverted_index.by | 113 |
| abstract_inverted_index.of | 32 |
| abstract_inverted_index.on | 96 |
| abstract_inverted_index.to | 39, 62, 104, 115 |
| abstract_inverted_index.up | 114 |
| abstract_inverted_index.100 | 92 |
| abstract_inverted_index.DNN | 45, 110 |
| abstract_inverted_index.and | 25, 35, 55, 68 |
| abstract_inverted_index.for | 7, 44 |
| abstract_inverted_index.the | 16, 30, 64 |
| abstract_inverted_index.best | 65 |
| abstract_inverted_index.deep | 8 |
| abstract_inverted_index.find | 63 |
| abstract_inverted_index.real | 97 |
| abstract_inverted_index.show | 101 |
| abstract_inverted_index.then | 49 |
| abstract_inverted_index.this | 37 |
| abstract_inverted_index.time | 112 |
| abstract_inverted_index.uses | 50 |
| abstract_inverted_index.with | 72, 84 |
| abstract_inverted_index.(DNN) | 11 |
| abstract_inverted_index.3.4x. | 116 |
| abstract_inverted_index.Gbps. | 93 |
| abstract_inverted_index.build | 77 |
| abstract_inverted_index.fully | 79 |
| abstract_inverted_index.group | 57 |
| abstract_inverted_index.jobs. | 47 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.plan, | 70 |
| abstract_inverted_index.that, | 102 |
| abstract_inverted_index.three | 21 |
| abstract_inverted_index.(RDMA) | 89 |
| abstract_inverted_index.access | 88 |
| abstract_inverted_index.across | 20 |
| abstract_inverted_index.called | 60 |
| abstract_inverted_index.direct | 86 |
| abstract_inverted_index.fabric | 6 |
| abstract_inverted_index.memory | 87 |
| abstract_inverted_index.models | 100 |
| abstract_inverted_index.neural | 9 |
| abstract_inverted_index.remote | 85 |
| abstract_inverted_index.12-node | 81 |
| abstract_inverted_index.TopoOpt | 14, 48, 108 |
| abstract_inverted_index.network | 10, 26, 42, 66 |
| abstract_inverted_index.process | 19 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.reduces | 109 |
| abstract_inverted_index.routing | 69 |
| abstract_inverted_index.Fat-Tree | 106 |
| abstract_inverted_index.TopoOpt, | 2 |
| abstract_inverted_index.compared | 103 |
| abstract_inverted_index.leverage | 36 |
| abstract_inverted_index.property | 38 |
| abstract_inverted_index.together | 71 |
| abstract_inverted_index.topology | 67 |
| abstract_inverted_index.traffic, | 34 |
| abstract_inverted_index.training | 12, 18, 46, 99, 111 |
| abstract_inverted_index.AllReduce | 33 |
| abstract_inverted_index.algorithm | 59 |
| abstract_inverted_index.construct | 40 |
| abstract_inverted_index.efficient | 41 |
| abstract_inverted_index.prototype | 83 |
| abstract_inverted_index.strategy. | 75 |
| abstract_inverted_index.technique | 54 |
| abstract_inverted_index.topology. | 27 |
| abstract_inverted_index.forwarding | 90 |
| abstract_inverted_index.functional | 80 |
| abstract_inverted_index.mutability | 31 |
| abstract_inverted_index.topologies | 43 |
| abstract_inverted_index.workloads. | 13 |
| abstract_inverted_index.Large-scale | 94 |
| abstract_inverted_index.alternating | 52 |
| abstract_inverted_index.demonstrate | 29 |
| abstract_inverted_index.dimensions: | 22 |
| abstract_inverted_index.distributed | 17, 98 |
| abstract_inverted_index.simulations | 95 |
| abstract_inverted_index.TotientPerms | 61 |
| abstract_inverted_index.co-optimizes | 15 |
| abstract_inverted_index.computation, | 23 |
| abstract_inverted_index.optimization | 53 |
| abstract_inverted_index.similar-cost | 105 |
| abstract_inverted_index.communication, | 24 |
| abstract_inverted_index.direct-connect | 5, 82 |
| abstract_inverted_index.interconnects, | 107 |
| abstract_inverted_index.parallelization | 74 |
| abstract_inverted_index.theory-inspired | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile |